Lưu trữ cho từ khóa: Thuốc tương phản từ

PHẦN 8: KỸ THUẬT CHỤP CỘNG HƯỞNG TỪ TIM MẠCH

Nói chung, các phương pháp chụp hình chẩn đoán như X quang quy ước, CT, siêu âm và cộng hưởng từ đều là các kỹ thuật chụp tĩnh, nghĩa là chụp một vật tại một thời điểm (khoảnh khắc) nhất định. Do vậy chúng đều gặp phải những vấn đề giống nhau khi chụp những vùng cơ thể có các cơ quan chuyển động như ngực và bụng.

Vấn đề còn phức tạp hơn khi chụp hình hệ thống tim mạch. Hoạt động co bóp của tim và dòng chảy của máu biểu hiện cho chức năng của chúng. Vì thế chúng ta không những chẳng có cách gì để làm cho chúng “đứng yên hoặc chảy chậm lại một chút” mà còn phải tìm cách ghi nhận đúng thực trạng hoạt động của chúng. Trong phần này chúng ta bàn luận chủ yếu về các kỹ thuật mạch đồ cộng hưởng từ MRA (MR Angiography), dành một phần của phần cho kỹ thuật tâm đồ cộng hưởng từ (cardiac MR). Ngoài ra, các kỹ thuật dựng hình, mặc dù không phải là kỹ thuật chụp mạch máu nhưng vì rất thường được sử dụng trong lĩnh vực này nên cũng được phân tích ở đây. Nội dung cụ thể bao gồm:

  • Hiệu ứng dòng chảy
  • Mạch đồ cộng hưởng từ có thuốc tương phản
  • Kỹ thuật mạch đồ máu đen
  • Kỹ thuật mạch đồ máu sáng
  • Tâm đồ cộng hưởng từ
  • Kỹ thuật dựng hình

1. HIỆU ỨNG DÒNG CHẢY

Dòng máu chảy trong lòng mạch cũng giống như các chất lỏng chảy trong lòng ống, nghĩa là chúng cũng tuân theo các định luật thủy động học trong y học được đề cập đến trong lĩnh vực huyết động học (hemodynamics). Ngoài ra dưới tác dụng của các xung và thang từ, dòng máu đang chảy có những biểu hiện về mặt cộng hưởng từ (tín hiệu) khác hẳn với các mô tĩnh xung quanh, sinh ra các hiệu ứng dòng chảy (flow effect).

Dòng máu trong lòng mạch

Dòng máu chảy vốn rất phức tạp, tùy thuộc vào hoạt động của tim (thì tâm thu, thì tâm trương), kích thước của mạch máu (động mạch chủ và các nhánh), loại mạch máu (động mạch, tĩnh mạch, mao mạch, xoang tĩnh mạch), hướng máu chảy (điểm phân chia mạch máu, chỗ rẽ ngoặt), tình trạng bệnh lý của mạch máu (chỗ phình, mảng xơ vữa) và rất nhiều các yếu tố khác. Tuy nhiên để cho đơn giản và phù hợp với bối cảnh thảo luận về cộng hưởng từ, chúng ta tạm phân chia tình trạng dòng chảy trong lòng mạch thành ba loại: dòng chảy đều (laminar flow), dòng chảy dồn (plug flow) và dòng cuộn xoáy (turbulent flow).

Với dòng chảy đều, vận tốc của các proton đều như nhau, bất kể vị trí của chúng trong lòng mạch (Hình 1a). Ngược lại ở dòng chảy dồn, tốc độ của các proton ở gần thành mạch chậm hơn so với các proton ở chính giữa lòng mạch (Hình 1b). Trong khi đó, tình trạng xoáy dòng chỉ xảy ra ở những chỗ kích thước lòng mạch hoặc hướng chảy thay đổi đột ngột, sinh ra các dòng chảy phụ xoáy cuộn, thường gặp ở chỗ phình mạch, sau đoạn hẹp, chỗ tách các nhánh từ các động mạch lớn (Hình 1c).


Hình 1:
(a) Dòng chảy đều. (b) Dòng chảy dồn. (c) Dòng cuộn xoáy.

Tính chất cộng hưởng từ của dòng máu

Vì nước chiếm một lượng lớn trong máu và hầu như ở dạng tự do, thời gian T1 và T2 của máu đều khá dài, chỉ ngắn hơn chút ít so với T1 và T2 của dịch não tủy. Do vậy nếu không chuyển động, máu sẽ có tín hiệu thấp trên hình trọng T1 và tín hiệu cao trên hình trọng T2, gần giống với tín hiệu của dịch não tủy. Tuy nhiên do chuyển động liên tục, tín hiệu của dòng máu bị thay đổi. Sự thay đổi này do những nguyên nhân được lý giải sau đây:

  1. Trong quá trình chụp hình cộng hưởng từ, các xung và thang từ được thiết kế để chúng tác dụng lên các mô đứng yên. Cụ thể, trong các chuỗi xung điểm vang spin SE, xung tái lập 180o sẽ tác dụng lên đúng các mô đã được kích hoạt bởi một xung kích thích trước đó tại đúng vị trí đã định sẵn. Tuy nhiên do máu chuyển động liên tục, khối máu được kích hoạt bằng xung kích thích đã trôi qua khỏi vị trí ban đầu vào lúc phát xung tái lập khiến pha của các proton trong khối máu này không được tái lập. Chúng ngày càng lệch pha nhau nhiều hơn nên không tạo ra được tín hiệu nào.

  2. Tình trạng cũng gần như thế dưới tác động của các thang từ. Chúng ta đã biết rằng các thang từ chọn lớp và thang mã tần số đều có một thùy khử pha, sau đó là một thùy hồi pha để điều chỉnh lại pha của các proton do tác dụng của thùy khử Thế nhưng do dòng máu chuyển động nên vào thời điểm hồi pha, vị trí của khối máu không còn ở đúng vị trí ban đầu nên tác dụng của thùy hồi pha không còn thích hợp như trước nữa. Kết quả là thùy hồi pha không điều chỉnh được pha của các proton, dẫn đến chúng ngày càng lệch pha nhau nhiều hơn.

  3. Khi thực hiện một chuỗi xung, người ta thường phải lập lại các xung nhiều lần sau mỗi khoảng thời kích TR. Lúc này nếu so với các mô đứng yên trong lớp cắt, khối máu đang chảy vào lớp cắt đó nhận được ít các xung hơn. Điều này đồng nghĩa với việc độ từ hóa dọc của nó còn nguyên vẹn và lớn hơn so với các mô đứng yên xung quanh. Nói cách khác, các mô đứng yên đã bị bão hòa nhiều còn khối máu đang di chuyển vào lớp cắt hầu như không bị bão hòa Nếu lúc này nó bị kích thích, tín hiệu của nó sẽ cao hơn.

Hiệu ứng dòng chảy

Các đặc điểm cộng hưởng từ vừa nêu cùng với các đặc điểm huyết động ở trên cùng nhau tạo ra ba hiệu ứng dòng chảy (flow effect) sau đây:

  1. Hiệu ứng trống dòng. Hiệu ứng trống dòng (flow void) là tình trạng mạch máu “trống trơn” không có tín hiệu và gặp ở các hình chụp bằng các chuỗi xung điểm vang spin, nhất là khi thời vang TE khá dài (hình trọng T2). Trong các chuỗi xung này, khối máu đang chuyển động chỉ nhận được một xung kích thích mà không nhận được xung tái lập, khiến cho tình trạng lệch pha của các proton trong khối máu do tác dụng của các thang từ và của môi trường xung quanh không được điều chỉnh. Kết quả là trong lòng mạch không có tín hiệu và cho ra màu đen (Hình 2).


Hìn
h 2: Hiệu ứng trống dòng trên hình trọng T2 được chụp bằng chuỗi xung điểm vang spin. Hai mũi tên phía trên chỉ vào hai động mạch não giữa (MCA) phải và trái. Mũi tên phía dưới chỉ vào xoang tĩnh mạch dọc trên.

  1. Hiệu ứng nội dòng. Như đã nói ở trên, khối máu đang di chuyển vào một lớp cắt bị bão hòa ít hơn so với các mô đứng yên trong lớp cắt và do vậy nó có tín hiệu cao hơn so với các mô này. Khi đi càng sâu vào các lớp cắt kế tiếp, khối máu càng nhận được nhiều xung và ngày càng bị bão hòa nhiều hơn. Tuy nhiên do phần máu nằm ngay trung tâm lòng mạch chảy nhanh hơn so với phần máu nằm sát thành mạch (dòng chảy dồn), phần máu trung tâm thoát được nhiều xung và bị bão hòa ít hơn, cho ra tín hiệu cao hơn phần máu cận thành (Hình 3). Kết quả này được gọi là hiệu ứng nội dòng (inflow effect).

  2. Hiu ng cận thành. Bên trong dòng chảy dồn, phần máu trung tâm chảy nhanh và có tốc độ đều hơn so với phần máu ở vùng sát thành mạch (Hình 4). Ở mức độ các voxel, điều này có nghĩa là các proton trong các voxel sát thành mạch có các tốc độ khác nhau nhiều, làm cho các proton lệch pha nhau nhiều hơn. Khi đó, tín hiệu chung của toàn voxel bị mất, gây ra tình trạng mất tín hiệu ở vùng cận mạch.


Hìn
h 3: Hiệu ứng nội dòng: lúc đầu khối máu chảy vào vùng đang chụp không bị bão hòa nên cho tín hiệu mạnh hơn so với các mô đứng yên. Càng vào trong sâu, khối máu càng bị bão hòa nhiều hơn nhưng phần trung tâm vẫn có tín hiệu mạnh hơn phần cận thành.


Hình 4:
Hiệu ứng cận thành: các voxel sát thành mạch chảy chậm và không đều bằng các voxel trung tâm, dẫn đến tín hiệu của dòng máu sát thành mạch bị mất.

Mạch đồ cộng hưởng từ MRA

Khả năng ghi nhận được sự chuyển động của máu trong lòng mạch so với các mô đứng yên xung quanh đã cho phép sử dụng các kỹ thuật cộng hưởng từ để đánh giá tình trạng bệnh lý của mạch máu. Hình ảnh mạch máu thu nhận được dù vẫn có những khác biệt so với hình mạch máu đồ chụp bằng X quang thường quy nhưng nhìn chung cả hai phương pháp đều có mục đích giống nhau và cho ra kết quả hình ảnh với rất nhiều đặc điểm tương tự. Vì lẽ đó, các phương pháp cộng hưởng từ dùng để chụp hình mạch máu cũng được gọi bằng một tên tương tự là mạch máu đồ cộng hưởng từ hay viết gọn hơn là mạch đồ cộng hưởng MRA (MR Angiography).

Mới nghe qua, chúng ta cứ ngỡ rằng chụp mạch máu cộng hưởng từ phải dùng đến thuốc tương phản, tương tự như chụp mạch máu bằng X quang hoặc CT phải dùng đến thuốc cản quang. Điều này chỉ đúng một phần. Các kỹ thuật mạch đồ cộng hưởng từ MRA có thể sử dụng thuốc tương phản hoặc có thể không. Khả năng không cần sử dụng thuốc tương phản là một ưu điểm hết sức tuyệt vời của cộng hưởng từ so với các kỹ thuật khác.

Các kỹ thuật mạch đồ cộng hưởng không dùng thuốc tương phản được chia thành hai nhóm: kỹ thuật máu tối (dark blood) hay máu đen (black blood) và kỹ thuật máu sáng (bright blood) hay máu trắng (white blood). Trong các kỹ thuật máu tối, người ta sử dụng hiệu ứng trống dòng hoặc một phương pháp khác để làm mất tín hiệu của dòng chảy, cho phép khảo sát và đánh giá chính xác hơn tình trạng của thành mạch. Ngược lại, các kỹ thuật máu sáng sử dụng hiệu ứng nội dòng (kỹ thuật TOF) hoặc sự khác biệt pha giữa hai lần chụp dòng mạch (kỹ thuật tương phản pha) để ghi nhận và biểu hiện dòng máu chảy sáng hơn mô xung quanh. Kỹ thuật TOF và kỹ thuật tương phản pha sẽ được bàn luận trong Phần 4.

Mặc dù các mạch đồ cộng hưởng đều có thể dùng phương pháp chụp hai chiều (2D) hoặc chụp ba chiều (3D) nhưng phương pháp ba chiều vẫn được ưa chuộng hơn. Sau khi thu dữ liệu vào trong k-không gian và dùng thuật toán biến đổi Fourier ba chiều (3DFT) để có được một tập dữ liệu số ba chiều, người ta có thể dùng một phương pháp dựng ảnh ba chiều để tái tạo lại hình ảnh mạch máu. Kỹ thuật tái tạo mạch máu ba chiều hay được sử dụng là MIP (maximum intensity projection).

2. MẠCH ĐỒ CỘNG HƯỞNG TỪ CÓ THUỐC TƯƠNG PHẢN

Như chúng ta đã biết tác dụng của các loại thuốc tương phản từ là làm cho thời gian T1 và T2 của các mô ngắn đi. Trong kỹ thuật chụp hình mạch máu, thuốc tương phản từ chủ yếu là nhóm gado chelate được bơm vào máu qua đường tĩnh mạch với một nồng độ thích hợp để làm cho T1 của máu ngắn hơn hẳn so với các mô đứng yên xung quanh, nhờ đó tín hiệu của máu trong lòng mạch đủ cao để có thể phân định rõ các mạch máu.

Chuỗi xung và các tham số

Trong chụp hình mạch máu có thuốc tương phản, người ta thường dùng phương pháp chụp ba chiều với chuỗi xung điểm vang thang từ có phá nhiễu (spoiled GRE). Thời vang TE cần phải thật ngắn để làm giảm tối đa tình trạng lệch pha của các proton trong máu. Thời kích TR cũng cần phải thật ngắn. Thứ nhất nó bảo đảm cho các mô đứng yên gần như bị bão hòa nên chúng không che khuất các mạch máu. Thứ hai nó bảo đảm cho chúng ta có thời gian ghi nhận đủ tín hiệu ngay trong lúc nồng độ thuốc tương phản còn khá cao trong động mạch. Góc lật cũng thường khá nhỏ, thay đổi trong khoảng 20o-45o, tương ứng với thời gian TR dưới 10 ms.

Để giảm bớt thời gian chụp, người ta còn điều chỉnh mặt phẳng chụp theo vị trí giải phẫu của mạch máu, chẳng hạn chụp theo mặt phẳng dọc nghiêng (sagittal oblique) đối với động mạch chủ (Hình 5). Ngoài ra vì mô mỡ có T1 khá ngắn nên để làm rõ hơn hình ảnh mạch máu, người ta có thể dùng thuốc với liều cao và bơm với tốc độ nhanh (kỹ thuật bơm dồn hay bơm bolus) hoặc phải dùng đến kỹ thuật xóa mỡ dù có tốn thêm thời gian thu nhận tín hiệu.


Hìn
h 5: Phình động mạch chủ đoạn lên ở một bệnh nhân nam 34 tuổi. (a) Hình dọc nghiêng có thuốc tương phản cho thấy giãn rộng gốc động mạch chủ (mũi tên) và một phần cung động mạch chủ đoạn lên. (b) Hình ngang theo hướng dòng máu phụt ra từ tâm thất trái cho thấy giãn rõ gốc động mạch chủ (mũi tên lớn) cùng với dòng máu phụt ngược (mũi tên nhỏ).

Định thời gian bơm thuốc

Do cần phải bảo đảm một nồng độ thuốc tương đối cao trong động mạch khi thực hiện chụp nên chúng ta cần phối hợp nhịp nhàng giữa thời điểm bơm thuốc và thời điểm phát xung chụp. Liều lượng thuốc thông thường là 40-50 mL được bơm với tốc độ 2-2,5 mL/giây, sau đó là 20 mL dung dịch nước muối sinh lý để rửa sạch thuốc trong lòng tĩnh mạch. Thời điểm phát xung có thể khoảng 25 giây sau đó đối với động mạch chủ ngực và 30 giây đối với động mạch chủ bụng.

Nín thở

Nín thở cũng là một động tác quan trọng để bảo đảm hình thu được không bị nhòe, đặc biệt khi cần chụp các mạch máu vùng ngực và bụng. Cho bệnh nhân thở thêm oxy và tăng thông khí có thể giúp bệnh nhân nín thở được lâu hơn, đa số có thể nín thêm được khoảng 25 giây. Dù vậy đối với bệnh nhân già hoặc thể trạng quá kém, nín thở lâu thường không thực hiện được.

3. KỸ THUẬT MẠCH ĐỒ MÁU ĐEN

Dựa trên hiệu ứng trống dòng (flow void) kèm với một phương pháp thích hợp nào đó, người ta có thể làm mất tín hiệu dòng máu đang chảy trong lòng mạch và nhờ đó cho thấy rõ hơn tình trạng của thành mạch (Hình 6). Những kỹ thuật chụp mạch máu loại này được gọi chung là kỹ thuật mạch đồ máu đen (black blood MRA).


Hình 6:
Chụp hình các mạch máu lớn ở tim bằng kỹ thuật máu đen. Trên hình này, dòng máu đang chảy không có tín hiệu (màu đen), làm nổi bật thành mạch của đoạn lên (đầu mũi tên đen), đoạn xuống (đầu mũi tên trắng) của quai động mạch chủ. RPA là động mạch phổi phải.

Để có hiệu ứng trống dòng, người ta sử dụng chuỗi xung điểm vang spin, thường gặp hơn là chuỗi xung nhanh FSE (fast spin echo) với một xâu điểm vang khá dài, càng làm cho lòng mạch đen thêm. Bổ sung thêm cho hiệu ứng trống dòng vốn gây ra bởi tình trạng lệch pha của các proton trong lòng mạch, người ta còn sử dụng nhiều phương pháp khác để làm cho chúng lệch pha nhau nhiều hơn nữa. Chẳng hạn dùng một xung bão hòa tác dụng trên khối máu trước khi nó đi vào lớp cắt định chụp, nhờ đó khi khối máu này đi vào lớp cắt, nó không bị tác dụng của xung kích thích và vì thế không cho tín hiệu. Rõ ràng phương pháp này chỉ có tác dụng tốt khi chúng ta biết rõ hướng của dòng chảy.

Một phương pháp khác hiệu quả hơn, đặc biệt ở những nơi có nhiều mạch máu lớn chảy theo nhiều hướng khác nhau như vùng tim và cung động mạch chủ. Phương pháp này, được gọi là kỹ thuật khử dòng đảo kép (double inversion nulling) sử dụng hai xung đảo 180o.

Trước tiên áp dụng một xung đảo không kèm thang từ để lật độ từ hóa dọc 180o. Loại xung này được gọi là xung đảo không chọn lọc vì nó tác dụng lên toàn bộ khối cơ thể đang cần chụp. Sau đó xung đảo thứ hai được áp dụng kèm với thang từ chọn lớp Gs. Khi này chỉ có các proton trong lớp cắt mới bị tác dụng và đảo ngược tiếp 180o trở lại vị trí ban đầu. Các proton bên ngoài lớp cắt vẫn bị đảo 180o. Khi đó nếu chọn một thời đảo TI thích hợp để độ từ hóa của máu khôi phục về zero, xung kích thích được phát ra lúc này không tác dụng lên dòng máu đang chảy, cho ra tín hiệu trống trong lòng mạch.

Kỹ thuật mạch đồ máu đen hay được sử dụng để chẩn đoán các bệnh lý của thành mạch, nhất là động mạch chủ. Các bệnh lý loại này hay gặp là: phình bóc tách động mạch chủ và tụ máu nội thành (Hình 7).


Hìn
h 7: Tụ máu nội thành ở một bệnh nhân nam 87 tuổi với triệu chứng đau ngực. Hình cắt ngang trọng T1 cho thấy thành mạch ở đoạn xuống của quai động chủ dày lên với tín hiệu tăng lên rõ rệt (mũi tên), phù hợp với tình trạng tụ máu nội thành.

4. KỸ THUẬT MẠCH ĐỒ MÁU SÁNG

Các kỹ thuật mạch đồ máu sáng ghi nhận dòng máu đang chảy trong lòng mạch nhờ vào tín hiệu của nó cao hơn các mô xung quanh. Về cơ bản có hai kỹ thuật mạch đồ máu sáng. Một được gọi là kỹ thuật TOF (time of flight) với nguyên lý dựa trên hiệu ứng nội dòng đã thảo luận ở Phần 1. Loại thứ hai là kỹ thuật tương phản pha (phase contrast) dựa trên sự khác biệt về pha của dòng máu khi nó chảy theo một chiều nào đó.

Kỹ thuật TOF

Kỹ thuật mạch đồ TOF dựa trên hiệu ứng nội dòng, nghĩa là hiện tượng tăng tín hiệu của dòng chảy so với các mô đứng yên khi một khối máu trôi vào một lớp cắt bởi vì nó không bị hoặc ít bị bão hòa hơn so với những mô đó (xem lại Hình 3). Cả hai phương pháp chụp hai chiều và ba chiều với chuỗi xung điểm vang thang từ GRE đều được sử dụng với những ưu khuyết điểm vốn có của chúng.

  1. Trong kỹ thuật TOF hai chiều (2D-TOF), khối máu “mới” chưa bị bão hòa phải “trôi” vào lớp cắt đang được khảo sát không cần quá lớn. Vì vậy kỹ thuật 2D-TOF rất có giá trị khi đánh giá các dòng chảy chậm, nhất là khi cần phân biệt giữa tình trạng chảy chậm với tắc nghẽn (Hình 8). Thời gian TR thường dùng từ 20 đến 50 ms, đủ ngắn để bảo đảm cho các mô đứng yên bị bão hòa và đủ dài để cho khối máu trôi vào lớp cắt chưa bị bão hòa. Góc lật cũng cần điều chỉnh tương tự. Góc lật lớn làm giảm tín hiệu của mô đứng yên (do có độ bão hòa cao) và làm tăng tín hiệu của khối máu đang chảy vào (do có độ bão hòa thấp) nên làm tăng độ tương phản giữa dòng máu chảy với mô đứng yên. Tuy nhiên sau đó khối máu bắt đầu bị bão hòa và giảm tín hiệu nên nếu dòng máu chảy chậm hoặc hầu như không chảy, đặc biệt là trong thì tâm trương, góc lật lớn sẽ làm giảm tín hiệu của dòng máu. Trong thực tế, một góc lật nằm trong khoảng từ 30o đến 60o thường đủ đến bảo đảm “chất lượng tương phản” của hình. Độ dày của lớp cắt cũng cần chọn khá mỏng để bảo đảm luôn có đủ lượng máu mới thay thế, nhất là khi có nghi ngờ tắc nghẽn. Khi đó, độ dày lớp cắt có khi chỉ cỡ 2 mm hoặc mỏng hơn. Ngoài các yêu cầu kỹ thuật vừa nêu, người ta còn sử dụng thêm hai kỹ thuật nữa để làm tăng chất lượng của ảnh. Thứ nhất là dùng các xung bão hòa để làm mất tín hiệu của những dòng chảy ngược như đã mô tả trong Phần 5.5. Thứ hai là dùng một kỹ thuật khử moment thang từ, thường được gọi là kỹ thuật bù dòng, để làm giảm tình trạng lệch pha của các proton trong dòng máu chảy.

  1. Với kỹ thuật TOF ba chiều (3D-TOF), độ phân giải và tỷ lệ tín hiệu/ nhiễu SNR lớn hơn so với kỹ thuật TOF hai chiều. Vì vậy nó đánh giá tốt hơn các vùng máu chảy tốc độ cao, chẳng hạn vùng động mạch cảnh và vùng đa giác Willis (Hình 9). Tuy nhiên đối với các mạch máu có dòng chảy chậm, kỹ thuật khảo sát này không tốt bằng kỹ thuật 2D-TOF.     


Hình 8:
Bệnh lý mạch máu ngoại biên ở một bệnh nhân nam 65 tuổi có triệu chứng thiếu máu ở chân trái. Hình (a) chụp cẳng chân có thuốc tương phản cho thấy có tắc nghẽn ở động mạch kheo (mũi tên lớn) kèm với tình trạng tái cấu trúc ở động mạch chày sau (các mũi tên nhỏ). Động mạch chày trước và động mạch mác có biểu hiện tổn thương nhưng không thấy rõ. Hình (b) chụp bằng kỹ thuật 2D-TOF ở vùng thấp hơn một chút và sử dụng kỹ thuật dựng hình MIP cho thấy động mạch chày sau khá lớn và rõ ràng (các mũi tên lớn); động mạch chày trước chỉ còn rất nhỏ (các mũi tên nhỏ).

So với kỹ thuật chụp có thuốc tương phản, kỹ thuật mạch đồ TOF thuộc loại kỹ thuật không xâm phạm (noninvasive) nên an toàn và tiện lợi hơn. Dẫu vậy trong nhiều trường hợp, sử dụng thuốc tương phản vẫn giúp đánh giá thêm mức độ và phạm vi tổn thương (Hình 8 và 9). Đặc biệt, thời gian chụp khi có dùng thuốc tương phản thường ngắn hơn nhiều.

Kỹ thuật tương phản pha

Đúng như tên gọi của nó, kỹ thuật tương phản pha PC (phase contrast) sử dụng sự chênh lệch pha của dòng máu đang chảy giữa hai lần “chụp” để tính ra tốc độ của dòng chảy. Để làm được điều này, người ta phải có ít nhất hai bộ dữ liệu được ghi nhận cùng lúc hoặc xen kẽ nhau. Hai bộ dữ liệu này hoàn toàn giống nhau đối với các mô đứng yên; với dòng máu đang chảy, khác biệt về pha theo một trục nào đó cho phép tính ra tốc độ chảy của dòng máu (Hình 10).


Hìn
h 9: Hình có thuốc tương phản (a) cho thấy hẹp nặng một đoạn động mạch cảnh trong bên trái còn bên phải bị tắc ở thấp hơn một ít. Tuy nhiên trên hình chụp 3D-TOF ở vùng đa giác Willis (b), tình trạng thông nối vẫn rất tốt vì còn thấy rõ các đoạn A1, động mạch thông trước và thông sau.


Hìn
h 10: Hai hình thu được khi chụp tương phản pha động mạch chủ. Hình (a) được tạo từ tín hiệu với độ lớn thực sự của chúng. Đoạn lên của quai động mạch chủ (đầu mũi tên trắng), đoạn xuống (đầu mũi tên đen) và động mạch phổi gốc (MPA) đều có tín hiệu mạnh. Hình (b) là hình tương phản pha với đoạn xuống quai động mạch chủ sáng (mũi tên đen) vì dòng chảy thuận chiều còn đoạn lên (mũi tên trắng) và MPA đen vì dòng chảy ngược chiều.

Muốn tạo được sự khác biệt pha tùy theo vận tốc, người ta áp dụng một thang từ mã hóa hai thùy theo một trục cho một lần ghi nhận dữ liệu và áp dụng thang từ theo chiều ngược lại cho lần ghi nhận kia. Sự khác biệt về pha hay độ xê dịch pha khi đó tỷ lệ với vận tốc. Độ xê dịch này được điều chỉnh bằng cường độ thang từ và thời điểm áp dụng sao cho chúng nằm trong khoảng từ -180o đến +180o thông qua một tham số của chuỗi xung có tên là tham số mã hóa vận tốc VENC (velocity encoding) được tính theo đơn vị cm/s. Trong thực tế, để đánh giá các dòng chảy chậm như dịch não tủy, giá trị tham số VENC từ 5-10 cm/s; để đánh giá các dòng chảy nhanh trong các động mạch lớn, giá trị tham số VENC từ 80-400 cm/s.

Kỹ thuật tương phản pha tránh được tình trạng bão hòa hay xảy ra trong kỹ thuật TOF. Nó cũng có khả năng loại bỏ tín hiệu cao của các mô đứng yên như mỡ và các sản phẩm của máu. Những mô này vốn có T1 ngắn nên có thể cũng cho ra tín hiệu cao giống như tín hiệu dòng chảy trong kỹ thuật TOF. Dĩ nhiên khuyết điểm chính của kỹ thuật tương phản pha là tốn thời gian chụp.

Tương tự như kỹ thuật TOF, kỹ thuật tương phản pha cũng có thể dùng phương pháp chụp hai chiều (2D-PC) hoặc ba chiều (3D-PC). Để chụp các hình 2D-PC, chúng ta có thể cho bệnh nhân nín thở hoặc chụp qua nhiều giai đoạn của chu kỳ tim. Khi đó các mô đứng yên sẽ được biểu diễn bằng màu xám; dòng chảy theo một hướng có màu sáng và dòng chảy theo hướng ngược lại sẽ có màu đen (xem lại Hình 10). Mức độ xám phụ thuộc vào vận tốc dòng chảy; chảy nhanh sẽ được biểu hiện thật trắng hoặc thật đen. Theo cách này, các hình 2D-PC có thể mã hóa vận tốc bằng các màu khác nhau thay vì mức độ trắng đen, tương tự như kỹ thuật Doppler màu.

Kỹ thuật 3D-PC, so với kỹ thuật 2D-PC, luôn có những ưu điểm tốt hơn về độ phân giải và tỷ lệ tín hiệu/nhiễu SNR. Khuyết điểm chính của nó là tốn thời gian hơn. Một đặc điểm đáng chú ý nữa là trong kỹ thuật 3D-PC, dòng máu cuộn xoáy có thể làm giảm tín hiệu dòng chảy, gây ra tình trạng dương tính giả. Tuy nhiên trong trường hợp có hẹp, dấu hiệu mất dòng chảy ở xa chỗ hẹp là một gợi ý đã có sự thay đổi lớn về mặt huyết động.

5. TÂM ĐỒ CỘNG HƯỞNG TỪ

Sự chuyển động hầu như liên tục của tim là một trở ngại rất lớn đối với các kỹ thuật chụp hình tim và các mạch máu lớn bằng cộng hưởng từ. Tuy nhiên trong những năm gần đây, nhờ những tiến bộ vượt bậc về công nghệ phần cứng và kỹ thuật chụp, người ta đã dần dần khắc phục được trở ngại này. Vì vậy cộng hưởng từ ngày nay đã trở thành một phương tiện chẩn đoán rất có giá trị đối với các bệnh lý tim bẩm sinh và mắc phải, kể cả các mạch máu lớn có liên quan như quai động mạch chủ.

Gác tim

Hoạt động co bóp của tim qua các thì tâm thu và tâm trương tuy là một hoạt động chức năng nhưng lại làm thay đổi cả về vị trí giải phẫu lẫn hình thái của tim và các mạch máu lớn. Trong một chu kỳ co bóp của tim, những thay đổi về mặt giải phẫu này hầu như xảy ra liên tục. Như vậy một hình chụp qua một mặt cắt nếu có thời gian ghi nhận dữ liệu kéo dài, nghĩa là thời gian chụp khá lâu, sẽ chỉ là một hình ảnh chồng chéo của nhiều cấu trúc giải phẫu đã chạy ngang qua mặt cắt đó trong thời gian ghi nhận dữ liệu.

Muốn chụp được một “khoảnh khắc” của tim, chúng ta không thể ghi đủ dữ liệu của khoảnh khắc đó trong một lần ghi, dù rằng hiện tại có những kỹ thuật ghi rất nhanh. Bù lại, do hoạt động co bóp của tim xảy ra có quy luật, mỗi chu kỳ tim đều có một khoảnh khắc “tương tự”. Thay vì ghi một lần tất cả dữ liệu cần thiết để chụp một khoảnh khắc, chúng ta sẽ ghi nhận dữ liệu từ nhiều khoảnh khắc tương tự trong các chu kỳ tim khác nhau. Khi này, tập hợp dữ liệu thu được qua các khoảnh khắc tương tự sẽ cùng nhau tạo ra hình ảnh chung của các khoảnh khắc đó trong mỗi chu kỳ tim.

Với cách làm như vậy, mọi kỹ thuật chụp hình tim cần phải xác định thời điểm chụp và ghi dữ liệu dựa vào các mốc thời gian trong một nhịp đập của tim. Các phương pháp sử dụng chu kỳ tim để xác định thời điểm chụp và ghi dữ liệu được gọi chung là kỹ thuật gác tim (cardiac gating).

Trong kỹ thuật gác tim, người ta có thể dùng điện tâm đồ ECG (electrocar- diography) hoặc mạch đập ngoại biên làm mốc chuẩn cho mỗi nhịp đập. Trong thực tế, phương pháp mạch đập ngoại biên ít được sử dụng vì chúng ta phải mất một thời gian nhất định kể từ lúc tim co bóp đến lúc có được tín hiệu mạch đập.

Theo phương pháp gác tim ECG, sóng R của phức hợp QRS được dùng làm tín hiệu kích hoạt. Khoảng cách R-R là một nhịp đập (một chu kỳ tim). Trong khoảng thời gian R-R, chúng ta có thể dùng một hoặc nhiều xung kích thích, mỗi xung tương ứng với một lần đo tín hiệu (lấy mẫu một điểm vang) và điền một hàng dữ liệu vào k-không gian.

Nếu mỗi nhịp đập chỉ phát một xung kích thích (R-R = TR), thời gian chụp sẽ rất lâu bởi vì chúng ta phải mất nhiều nhịp đập để ghi đủ dữ liệu cho một mặt cắt và cần phải có nhiều mặt cắt để khảo sát toàn bộ tim. Các kỹ thuật hiện nay đều phát nhiều xung kích thích trong một nhịp đập (TR nhỏ hơn nhiều so với R-R) theo một trong hai chế độ:

  1. Với thể thức nhiều-mặt, một-thì (multisection, single-phase mode), sau khi phát xung kích thích (một hoặc nhiều lần) rồi đo tín hiệu cho một mặt cắt, người ta lại tiếp tục kích thích và đo tín hiệu của các mặt cắt khác ngay trong một nhịp đập. Tên gọi nhiều-mặt, một-thì thật ra không chính xác bởi vì thể thức này mặc dù cho phép khảo sát toàn bộ cấu trúc giải phẫu của tim qua nhiều mặt cắt nhưng mỗi mặt cắt đều được khảo sát tại những thời điểm khác nhau (nhiều thì) trong chu kỳ tim chứ không phải một thì.

  1. Với thể thức một-mặt, nhiều-thì (single-section, multiphase mode), một mặt cắt được chụp nhiều lần qua suốt chu kỳ tim, cho thấy nhiều cấu trúc chạy ngang qua mặt cắt trong khoảng thời gian đó. Nếu số lượng hình chụp đủ nhiều và liên tục, loạt hình tại những thời điểm khác nhau của mặt cắt, khi được chiếu khá nhanh, sẽ tạo ra một đoạn phim xi-nê, cho phép khảo sát tình trạng động (chức năng) của tim và các mạch máu lớn. Cách chụp như thế được gọi là chụp cộng hưởng từ ci-nê (cine MRI).

Gác viễn cảnh và gác vọng cảnh

Như đã nói ở trên, sóng R của phức hợp QRS thường được dùng làm tín hiệu kích hoạt quá trình phát xung và lấy mẫu điểm vang. Có hai cách sử dụng sóng R khác nhau, được gọi là phương pháp gác viễn cảnh và gác vọng cảnh.

Trong phương pháp gác viễn cảnh (prospective gating), quá trình phát xung và lấy mẫu tín hiệu chỉ được thực hiện khi nhận được tín hiệu kích hoạt của sóng R và như vậy phụ thuộc hoàn toàn vào tín hiệu kích hoạt. Sau khi chụp xong một chu kỳ tim, quá trình này ngừng lại để chờ tín hiệu kích hoạt của chu kỳ tiếp theo. Nhờ vậy, phương pháp gác viễn cảnh ít bị ảnh hưởng bởi nhịp tim, nhất là trong những trường hợp các nhịp đập không đều.

Ngược lại, phương pháp gác vọng cảnh (retrospective gating) thực hiện đo dữ liệu liên tục qua suốt các chu kỳ tim những vẫn ghi nhận tín hiệu kích hoạt của sóng R như những mốc thời gian. Sau đó trong quá trình dựng ảnh, các mốc này được dùng để ghép dữ liệu từ nhiều chu kỳ tim khác nhau dựa vào khoảng cách giữa chúng đến các mốc. Như vậy trong phương pháp gác vọng cảnh, chúng ta có thể thu được dữ liệu của toàn bộ chu kỳ tim, kể cả khoảng thời gian cuối thì tâm trương.

Hình giải phẫu và hình chức năng

Tựu chung có hai nhóm chuỗi xung được sử dụng trong tâm đồ cộng hưởng từ: một cho thấy rõ cấu trúc giải phẫu và một cho phép đánh giá hoạt động co bóp của tim (chức năng) và các mạch máu lớn.

  1. Nhóm chuỗi xung cho ra hình ảnh giải phẫu cũng được gọi là nhóm chuỗi xung máu tối. Các chuỗi xung trong nhóm này đều thuộc loại chuỗi xung điểm vang spin (SE hoặc FSE) với thời gian chụp dài, cho ra hình ảnh giải phẫu nhờ vào hiệu ứng trống dòng. Nhờ dòng máu chảy đã bị mất tín hiệu, cấu trúc giải phẫu của tim và các mạch máu lớn được hiển thị tốt hơn. Với loại chuỗi xung này, người ta có thể chụp một loạt hình giải phẫu theo nhiều mặt cắt khác nhau qua tim. Loạt hình cắt ngang (Hình 11) hay được dùng trong các bệnh lý tim bẩm sinh.


Hình 11:
Loạt hình cắt ngang qua tim với chuỗi xung điểm vang spin cho thấy cấu trúc giải phẫu tương tự như trên CT. Aa, Ad: ĐMC lên và xuống; MP: ĐM phổi gốc; S, IVC: TMC trên và dưới; RP LP: ĐM phổi phải và trái; RB, LB: Phế quản phải và trái; RV, RA: thất và nhĩ phải; LV, LA: thất và nhĩ trái.

  1. Nhóm chuỗi xung chụp hình ảnh chức năng đa số thuộc loại chuỗi xung điểm vang thang từ GRE với thời gian chụp ngắn, cho ra một loạt hình xi-nê có tín hiệu máu sáng. Trong số này, chuỗi xung SSFP hay true- FISP với các tham số TR = 2,5-10 ms, TE = 1-2 ms, góc lật a = 8-20o rất hay được dùng (Hình 12).


Hình 12:
Hình xi-nê chụp bằng chuỗi xung SSFP theo trục ngắn của tim lần lượt qua các thì: đầu tâm thu, cuối tâm thu, đầu tâm trương, cuối tâm trương.

Các mặt cắt

Ngoài các mặt cắt ngang trục, cắt dọc đứng và cắt dọc trán thông thường, người ta phải thực hiện thêm các mặt cắt quan trọng: mặt cắt theo trục ngắn (short-axis section), mặt cắt theo trục dài (long-axis section) và mặt cắt bốn buồng (four-chamber section). Phương pháp thực hiện được gọi là chụp chếch đôi (double oblique projection). Khởi điểm là một mặt cắt ngang hoặc mặt cắt dọc trán cho thấy rõ hai buồng thất trái và nhĩ trái. Ở đây chúng ta dùng một mặt cắt ngang làm hình dẫn đường khởi điểm.


Hình 13:
Các hình hai buồng dẫn đường. Bên trái là hình cắt ngang khởi điểm, thu được từ loạt hình cắt ngang tương tự như trong Hình 11. Bên phải là hình hai buồng đứng thu được từ hình bên trái và làm hình dẫn đường cho các mặt cắt tiếp theo.

Trong Hình 13 chúng ta có một hình cắt ngang làm hình dẫn đường khởi điểm (hình bên trái). Hình này có thể lấy trong loạt hình cắt ngang tương tự như ở Hình 11. Từ đây chúng ta sẽ thực hiện mặt cắt chếch phải (right oblique projection) để cho ra hình hai buồng đứng ở bên trái của Hình 13. Từ hình hai buồng đứng dẫn đường, chúng ta sẽ có được mặt cắt theo trục ngắn (Hình 14) và mặt cắt theo trục dài (Hình 15).


Hình
14: Hình mặt cắt theo trục ngắn thu được từ hình hai buồng đứng dẫn đường của Hình 13.


Hình
15: Hình mặt cắt theo trục dài thu được từ hình hai buồng đứng dẫn đường của Hình 13.

Để thực hiện mặt cắt bốn buồng, chúng ta dựa vào mặt cắt theo trục ngắn đã thu được từ Hình 14. Bước cắt này được thực hiện theo như mô tả trong Hình 16.


Hình
16: Hình mặt cắt bốn buồng thu được từ mặt cắt theo trục ngắn ở Hình 14.

Một vài ứng dụng lâm sàng

Tâm đồ cộng hưởng từ rất có giá trị trong nhiều bệnh lý tim mạch. Một số ứng dụng lâm sàng thường gặp có thể kể ra là:

  1. Phình bóc tách động mạch chủ (aortic dissection). Cộng hưởng từ là một phương tiện chẩn đoán có giá trị để loại trừ bệnh lý bóc tách động mạch chủ. Nếu được chẩn đoán xác định, các hình ảnh thu được còn có thể cho thấy điểm vào và điểm ra của đoạn bóc tách, kể cả mức độ lan rộng đến các mạch máu lớn của quai động mạch chủ cũng như tình trạng huyết động ở động mạch chủ.

  2. Viêm màng ngoài tim co thắt (constrictive pericarditis). Phương tiện chụp cộng hưởng từ có gác tim bằng ECG cho phép phân biệt bệnh lý cơ tim hạn chế với viêm màng ngoài tim co thắt. Trong trường hợp viêm màng ngoài tim co thắt, màng tim sẽ dày ít nhất 4 mm và do đó làm tăng khoảng cách giữa vách buồng tim với bờ ngoài tim.

  3. Bệnh lý tim bẩm sinh (congenital heart disease). Nhờ khả năng phân định rõ cấu trúc giải phẫu và đánh giá được chức năng cũng như các dòng chảy, kỹ thuật cộng hưởng từ là một phương tiện chẩn đoán thường được sử dụng để đánh giá các bệnh tim bẩm sinh, đặc biệt là các bệnh lý có thông nối giữa các buồng tim.

Ngoài một vài bệnh lý thường gặp được nêu ở trên, các kỹ thuật tâm đồ cộng hưởng từ có thể đánh giá các bệnh lý cơ tim, hoạt động của các van tim, đo kích thước buồng tim, đánh giá dòng chảy. Hiện tại, các kỹ thuật chụp mạch vành bằng cộng hưởng từ cũng đang được nghiên cứu và đánh giá thử nghiệm.

6. KỸ THUẬT DỰNG HÌNH

Dựng hình hay tái định dạng để người xem có thể quan sát được vật ở nhiều góc độ khác nhau trong không gian ba chiều là bước cuối cùng không kém phần quan trọng trong quá trình chụp hình. Do sự phát triển mạnh mẽ của công nghệ máy tính (phần cứng, phần mềm), quá trình dựng hình có thể được thực hiện và cho ra kết quả gần như ngay lập tức. Nhờ vậy trong nhiều tình huống, nó cho phép chúng ta có cơ sở đưa ra những quyết định chụp hình hợp lý và kinh tế hơn.

Tập dữ liệu làm cơ sở để dựng hình là một tập dữ liệu ba chiều. Nếu sử dụng kỹ thuật chụp ba chiều, chúng ta đã có sẵn một tập dữ liệu như thế. Tuy nhiên nếu sử dụng kỹ thuật chụp hai chiều, chúng ta phải “chồng ghép” dữ liệu của các lớp cắt để có được tập dữ liệu ba chiều (Hình 17). Trong trường hợp này, các lớp cắt và khoảng trống giữa chúng cần phải khá mỏng.


Hìn
h 17: Chồng ghép dữ liệu của các lớp cắt ngang để có được tập dữ liệu ba chiều.

Kỹ thuật MPR

Về lý thuyết, cộng hưởng từ cho phép chúng ta chụp trực tiếp mọi mặt cắt theo bất kỳ chiều hướng nào bằng cách điều chỉnh các thang từ chọn lớp sao cho lực tác dụng chung của chúng chỉ làm cho các proton trong lớp cắt định khảo sát có tần số quay phù hợp.

Tuy nhiên thực hiện quá nhiều mặt cắt ở những chiều hướng khác nhau sẽ làm tăng thời gian chụp. Thay vì thế, chúng ta chỉ chụp một số mặt cắt quan trọng và sử dụng một thuật toán thích hợp “cắt” dữ liệu ba chiều đã thu thập được theo một mặt cắt bất kỳ (Hình 18). Kỹ thuật này có tên là tái tạo đa phẳng MPR (multiplanar reformation hay reconstruction).


Hìn
h 18: Dựng lại một mặt cắt chếch để thấy rõ hơn hệ thống đường mật.

Kỹ thuật MIP

Khi chụp mạch máu có thuốc tương phản, tín hiệu của các voxel trong lòng mạch cao hơn hẳn tín hiệu của các mô xung quanh. Nếu tưởng tượng rằng chúng ta đang đứng quan sát hệ thống mạch máu từ một góc độ nào đó, chúng ta sẽ thấy hình ảnh mạch máu hiện rõ hẳn trên một nền tối hơn ở xung quanh (Hình 19).


Hình 19:
Ảnh chụp có thuốc tương phản vùng tim và quai động mạch chủ được dựng lại bằng kỹ thuật MIP cho thấy rõ hình ảnh tim và các mạch máu lớn quanh đó. Dấu hiệu hẹp cục bộ ở động mạch dưới đòn trái biểu hiện bằng một đoạn thu nhỏ dần và mất tín hiệu (đầu mũi tên). Ở đoạn xa (mũi tên) bị mất tín hiệu do thuốc tương phản đậm hơn ở tĩnh mạch cạnh đó.

Kỹ thuật MIP (maximum-intensity projection) sử dụng ý tưởng đơn giản này. Giả thiết rằng người quan sát đứng ở một góc độ nhất định hướng về vật cần quan sát, kỹ thuật MIP sẽ giữ lại các voxel có tín hiệu cao nhất trên mỗi đường thẳng nối từ mắt người quan sát đến vật (tia quan sát). Khi chụp mạch máu có dùng thuốc tương phản (trong cộng hưởng từ) hoặc thuốc cản quang (trong CT), các voxel có giá trị cao nhất trên một tia quan sát đa phần là các voxel của mạch máu. Đối với CT, kỹ thuật MIP có thể dùng để tái tạo lại hình ảnh của khung xương (Hình 20).


Hình 20:
Các tia quan sát từ mắt người quan sát đến vật chỉ nhìn thấy các voxel có giá trị cao nhất. Xương (trên CT) và các mạch máu có tiêm thuốc (trên CT và cộng hưởng từ) thường có các voxel như vậy nên người quan sát có thể nhìn thấy chúng rõ hơn so với các mô xung quanh.

Trong lĩnh vực cộng hưởng từ mạch máu, kỹ thuật MIP cũng có thể được dùng cho cả trường hợp không dùng thuốc tương phản. Với các dữ liệu thu được bằng các kỹ thuật mạch đồ máu sáng, chúng ta có thể dùng kỹ thuật MIP để dựng lại hình ảnh mạch máu (xem lại Hình 8).

Kỹ thuật dựng bề mặt

Trong k thuật dng bề mặt (surface rendering), các voxel nằm ở bờ của một cấu trúc sẽ được xác định và cho hiển thị ra; các voxel còn lại được cho “ẩn đi”, tạo ra một hình ảnh bề mặt của một cấu trúc.

Mặc dù không được phổ biến như các kỹ thuật MIP và MPR, kỹ thuật dựng bề mặt cho phép “quan sát” rõ bề mặt (mặt trong và mặt ngoài) của một cấu trúc. Đặc biệt đối với các cơ quan dạng ống như ống tiêu hóa, khí phế quản hoặc mạch máu, kỹ thuật này cho phép thực hiện các cuộc ngoại soi ảo (virtual exoscopy) hoặc nội soi ảo (virtual endoscopy) như được minh họa trong Hình 21.


Hìn
h 21: Nội soi ảo ruột già (virtual colonoscopy) cho phép nhìn thấy polyp ở cả hai phía khi đi từ trong ra (A) và từ ngoài vào (B).

Kỹ thuật dựng khối vật

Mặc dù mới chỉ được ứng dụng trong thời gian gần đây do các yêu cầu tốc độ xử lý của máy tính quá cao, k thuật dng khối vật (volume rendering) thật ra là trường hợp tổng quát của hai kỹ thuật MIP và kỹ thuật dựng bề mặt. Trong kỹ thuật này, toàn bộ tập dữ liệu ba chiều đều được sử dụng; mỗi voxel được cho hiển thị hoặc không hiển thị dựa trên các ngưỡng của một số tham số được chọn trước, nhờ vậy người quan sát có thể định ra một mức độ trong suốt, cho phép họ “nhìn thấu” vào các cấu trúc sâu hơn.


Hình 22:
(a) Hình ảnh các nhánh động mạch não giữa (các đầu mũi tên) và khối thuyên tắc (mũi tên) được dựng lại bằng kỹ thuật dựng khối vật. (b) Hình chụp tương ứng trong lúc phẫu thuật.

7. NHỮNG ĐIỂM CẦN GHI NHỚ

  • Có thể phân chia tình trạng dòng chảy thành ba loại: dòng chảy đều, dòng chảy dồn và dòng cuộn xoáy. Trong dòng chảy đều, vận tốc của mọi voxel đều như n Trong dòng chảy dồn, các voxel ở trung tâm chảy đều và nhanh hơn các voxel ở sát thành mạch.
  • Ba hiệu ứng dòng chảy đáng chú ý là: hiệu ứng trống dòng bị mất hẳn tín hiệu trong lòng mạch; hiệu ứng nội dòng có tín hiệu dòng chảy mạnh hơn các mô đứng yên xung quanh tuy càng chảy tiếp, tín hiệu càng giảm nhưng vùng trung tâm vẫn mạnh hơn vùng sát thành mạch; hiệu ứng cận thành là một dạng hiệu ứng trống dòng, trong đó dòng chảy sát thành mạch bị mất tín hiệu.
  • Các kỹ thuật mạch đồ cộng hưởng nói chung được chia thành ba nhóm: mạch đồ cộng hưởng có dùng thuốc tương phản từ, mạch đồ máu đen và mạch đồ máu sáng. Mạch đồ máu đen sử dụng hiệu ứng trống dòng và một số kỹ thuật phụ trợ khác để làm mất tín hiệu của dòng chảy trong lòng mạch, cho phép đánh giá được tình trạng của thành mạch. Mạch đồ máu sáng sử dụng hiệu ứng nội dòng, cho ra kỹ thuật chụp TOF. Mạch đồ máu sáng cũng sử dụng độ chênh lệch pha (kỹ thuật tương phản pha) của dòng chảy để tính toán và đánh giá được vận tốc của dòng chảy.
  • Tâm đồ cộng hưởng từ sử dụng kỹ thuật gác tim bằng điện tâm đồ, cho phép chụp một loạt các phim liên tục nhau (phim xi-nê). Bằng cách đó chúng ta có thể đánh giá được chức năng co bóp của tim qua các thì của chu kỳ tim.
  • Các kỹ thuật dựng hình thông dụng trong lĩnh vực hình ảnh y học bao gồm: kỹ thuật MPR, kỹ thuật MIP, kỹ thuật dựng bề mặt và kỹ thuật dựng khối vật. Kỹ thuật MPR cho phép chúng ta xem xét vùng cơ thể đã được chụp theo một mặt cắt bất kỳ, không chỉ là những mặt cắt được thực hiện trong lúc chụp. Kỹ thuật MIP giữ lại những điểm “sáng nhất” khi chúng ta đang quan sát vùng cơ thể đã được chụp từ một góc độ bất kỳ, do vậy kỹ thuật này có thể được dùng để dựng lại hình ảnh xương (trong CT) hoặc hình ảnh mạch máu (CT và cộng hưởng từ). Kỹ thuật dựng bề mặt có thể được dùng trong các cuộc nội soi hoặc ngoại soi ảo vì nó cho phép nhìn thấy bề mặt của vật. Cuối cùng kỹ thuật dựng khối vật cho phép dựng lại toàn bộ khối cơ thể cần khảo sát và có thể “bóc” khối này theo từng lớp. 

Nguồn: Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 8, NXB ĐHQG TPHCM, Trang 113-136.

 

 

 

 

 

 

 

PHẦN 7: CÁC LOẠI THUỐC TƯƠNG PHẢN TỪ

Cũng như thuốc cản quang, thuốc tương phản từ hiện đã được sử dụng rất phổ biến trong lĩnh vực chụp hình cộng hưởng từ. Do vậy, những kiến thức về các loại thuốc tương phản từ cùng cơ chế tác động của chúng sẽ giúp chúng ta biết sử dụng chúng một cách đúng đắn và hiệu quả. Trong phần này, chúng ta sẽ tìm hiểu chi tiết về các loại thuốc tương phản từ qua các nội dung cụ thể như sau:

  • Cơ chế tác động của thuốc tương phản từ
  • Thuốc tương phản ngoại bào
  • Thuốc tương phản đặc hiệu tế bào gan
  • Thuốc tương phản đặc hiệu hệ thực bào

1. CƠ CHẾ TÁC ĐỘNG CỦA THUỐC TƯƠNG PHẢN TỪ

Khi so sánh phim chụp cắt lớp điện toán (computed tomography) hay phim CT có tiêm thuốc cản quang với phim cộng hưởng từ có tiêm thuốc tương phản từ, chúng ta thấy chúng có rất nhiều điểm giống nhau, đặc biệt là độ tương phản giữa các mô trong cơ thể. Điều này thường dẫn đến sự ngộ nhận, cho rằng thuốc tương phản từ cũng có cơ chế tác động giống như thuốc cản quang, nghĩa là nó có khả năng “cản từ”. Thực tế không phải như vậy.

Theo nguyên tắc tạo hình trên phim, hình ảnh X quang quy ước và hình CT biểu thị mức độ hấp thu tia X của các mô cơ thể. Mô hấp thụ tia X càng nhiều, nghĩa là khả năng cản tia hay cản quang càng tốt, hình ảnh của mô trên phim càng trắng. Ngược lại, hình ảnh trên phim cộng hưởng từ biểu thị cường độ tín hiệu được phát ra từ mỗi mô sau khi được kích thích bằng từ trường. Cường độ tín hiệu của mô càng cao, hình ảnh trên phim của mô càng trắng. Như chúng ta đã biết, tín hiệu thu được trong phạm vi cộng hưởng từ y học chủ yếu là tín hiệu từ các proton của nước và mỡ có trong cơ thể. Thuốc tương phản từ, do tính chất thuận từ (paramagnetism) của mình, có tác động trực tiếp lên các proton xung quanh, làm thay đổi cường độ tín hiệu của các proton và vì vậy làm thay đổi độ tương phản của các mô trên phim. Nói cách khác, các thuốc này không hề có khả năng “cản từ” như cảm tưởng ban đầu của chúng ta.

Về mặt hóa học, các chất tương phản từ đa phần đều là các hợp chất có chứa một trong ba nguyên tố: gado (Gd), mangan (Mn) hoặc sắt (Fe). Gado là một nguyên tố thuộc nhóm đất hiếm trong bảng phân loại tuần hoàn. Các hợp chất chelate* của gado (Gd3+) là các thuốc tương phản từ được sử dụng phổ biến nhất hiện nay. Trong các hợp chất của mangan (Mn2+) hiện mới chỉ có mangafodipir trisodium hay Mn-DPDP (Manganese dipyridoxyl diphos- phate) được phép sử dụng. Riêng sắt được sử dụng dưới dạng các oxyt sắt (Fe2+, Fe3+) nhưng được bọc trong một lớp  vỏ dextran hoặc một hợp  chất polysaccharide.

Nhìn chung các thuốc tương phản đều dùng đường tiêm tĩnh mạch; một số ít được dùng bằng đường uống để khảo sát ống tiêu hóa. Chúng ta không thảo luận thuốc tương phản từ đường uống vì chúng ít phổ biến, một mặt do bản thân cộng hưởng từ hiện vẫn còn ít giá trị đối với đường tiêu hóa, mặt khác do các kỹ thuật “kinh điển” hơn như đối quang kép hay nội soi vẫn là những phương tiện rất có giá trị đối với các tổn thương ở đường tiêu hóa nhưng có chi phí rẻ hơn rất nhiều so với cộng hưởng từ.

*(chelate hay chélate là một cấu trúc hóa học dạng vòng có chứa một ion kim loại.)

chế cộng hưởng từ

Về mặt từ tính, các thuốc tương phản từ đều là các chất thuận từ mặc dù cũng có tài liệu phân loại chi tiết hơn thành các chất nhạy từ (superparamagnetic). Tuy nhiên do không có proton trong phân tử, các chất thuận từ không tạo ra tín hiệu cộng hưởng từ.

Dưới tác động của từ trường ngoài B0, các chất thuận từ bị từ hóa (nhiễm từ) và trở thành các từ trường tí hon. Với một nồng độ đủ cao, chất thuận từ làm cho từ trường cục bộ mạnh hơn. Từ trường cục bộ mạnh hơn này đã góp phần làm giảm thời gian hồi giãn dọc (T1) và thời gian hồi giãn ngang (T2) của mô.

Tuy nhiên, tùy thuộc vào từng loại thuốc tương phản từ cụ thể mà mức độ làm  giảm  T1  và  T2  của  chúng  khác  nhau.  Các  thuốc  làm  giảm  T1  nhiều thường được xem là chất tương phản “dương” vì chúng làm cho tín hiệu của mô tăng lên ở hình trọng T1. Ngược lại các thuốc làm giảm T2 nhiều được xem là chất tương phản “âm” vì chúng làm giảm tín hiệu của mô trên hình trọng T2.

Các khoang phân b

Để dễ hình dung quá trình tác động của chất tương phản từ sau khi được tiêm vào đường tĩnh mạch, chúng ta có thể xem như các dịch trong cơ thể được phân bố vào các khoang: nội mạch, gian bào, nội bào. Khoang nội mạch và gian bào có thể được gọi chung là khoang ngoại bào. Đối với khoang nội bào, trong nhiều trường hợp chúng ta cũng cần phân biệt giữa hệ lưới nội mô, hệ lympho và tế bào chủ mô của từng cơ quan vì một số thuốc tương phản từ có tính đặc hiệu đối với một số loại tế bào (xem bên dưới).

Tính đặc hiệu tế bào

Chế tạo các chất tương phản từ đặc hiệu với một loại tế bào nhất định rõ ràng là một ý tưởng rất thú vị, nhất là đối với các tế bào bất thường. Theo đây, chỉ cần sử dụng thuốc tương phản từ thích hợp, chúng ta có khả năng khẳng định được chẩn đoán, định vị nơi tổn thương với cả phạm vi, mức độ tổn thương.

Mặc dù đa số các thuốc tương phản từ hiện nay đều không có tính đặc hiệu tế bào mà chỉ hoạt động chủ yếu ở khoang ngoại bào (nội mạch và gian bào), người ta cũng đã chế tạo thành công một số thuốc khá đặc hiệu với tế bào gan hoặc hệ thực bào đơn nhân (mononuclear phagocytic system) như hệ lưới nội mô, các đại thực bào và hệ lympho. 

Tính chất dược động học

Về mặt dược động học, sau khi được tiêm vào mạch máu qua đường tĩnh mạch, các thuốc tương phản từ sẽ theo dòng máu trong tĩnh mạch về tim, qua phổi rồi trở lại tim để theo hệ thống động mạch tỏa đi khắp cơ thể. Ở các mô, qua hệ thống mao mạch, chất tương phản từ có thể khuếch tán vào khoảng gian bào. Ở đây có thể xảy ra ba tình huống:

  1. Nếu chất tương phản từ đặc hiệu với tế bào gan, nó có thể được bắt giữ rồi được thải vào đường mật, qua ruột và theo phân ra ngoài.
  2. Nếu chất tương phản từ đặc hiệu với hệ thực bào, nó sẽ bị bắt giữ và tiêu hủy tại đây (hệ lưới nội mô, hạch lympho, tủy xương).
  3. Tuy nhiên một lượng lớn thuốc cản từ vẫn ở nội mạch (hồ máu). Chúng nhanh chóng được lọc qua thận rồi đào thải ra ngoài. Cần chú ý rằng lượng chất tương phản từ ở khoang gian bào cũng sẽ dần dần khuếch tán ngược trở lại vào nội mạch rồi được đào thải ở thận.

Một điểm cần đặc biệt nhấn mạnh ở đây: mao mạch của hệ thần kinh và tinh hoàn không cho thuốc tương phản từ thấm qua. Nghĩa là khi không có tổn thương, hệ thần kinh và tinh hoàn không bắt thuốc tương phản từ. Đặc điểm này rất có ý nghĩa trong lĩnh vực chẩn đoán hình ảnh thần kinh: não và tủy sống chỉ bắt thuốc tương phản từ khi có tổn thương hàng rào máu-não.

2. THUỐC TƯƠNG PHẢN NGOẠI BÀO

Chúng ta đã biết rằng ngoại bào bao gồm nội mạch và gian bào. Các thuốc tương phản từ chỉ tồn tại ở khoang ngoại bào đều là các chelate gado, chẳng hạn gadopentetate dimeglumine (Magnevist), gadoteridol (Dotarem), vân vân. Sau khi được tiêm tĩnh mạch, chúng nhanh chóng lan tỏa vào toàn bộ khoang ngoại bào. Cuối cùng chúng sẽ được lọc qua thận và đào thải qua nước tiểu. Về mặt thời gian, chúng ta có thể chia quá trình lan tỏa này thành ba giai đoạn, gọi là ba thì: thì động mạch, thì hồ máu và thì ngoại bào.

Thì động mạch

Trong khoảng thời gian không quá 30 giây sau khi tiêm thuốc tương phản từ, chất tương phản tồn tại chủ yếu trong hệ thống động mạch. Vì thế, khoảng thời gian này được gọi là thì động mạch (arterial phase). Đây là khoảng thời gian cho phép đánh giá khả năng tưới máu của các mô.

Khi chụp thì động mạch, dấu hiệu chụp thành công là trên hình chỉ thấy động mạch tăng tín hiệu; rất ít hoặc không thấy tĩnh mạch. Nếu chụp vùng bụng, tụy, lách và vỏ thận đã bắt đầu có ngấm thuốc mặc dù có thể không đồng nhất; tủy thận và chủ mô gan hầu như chưa thấy có thuốc.

Về mặt chức năng, hình ảnh sớm của thì động mạch đánh giá các động mạch tốt nhất. Các hình ảnh muộn hơn biểu thị khả năng được tưới máu của các mô. Để có được các hình ảnh của thì động mạch, trong thực tế người ta sử dụng các chuỗi xung GRE có nhiễu phá (hai chiều hoặc ba chiều).

Thì hồ máu

Khoảng thời gian 30 giây tiếp theo sau thì động mạch được xem là thì hồ máu (blood pool phase), nghĩa là thì hồ máu thường không vượt quá một phút kể từ khi tiêm thuốc tương phản từ vào tĩnh mạch. Trong khoảng thời gian này, thuốc tương phản từ đã hòa trộn vào toàn bộ hệ thống mạch máu (động mạch, mao mạch, tĩnh mạch). Một phần thuốc cũng có thể đã bắt đầu đi vào các ống thận hoặc ngấm qua thành mao mạch để vào khoang gian bào.

Ở gan, thì hồ máu cũng được gọi là thì tĩnh mạch cửa (portal vein  phase), mặc dù chủ mô gan cũng bắt thuốc mạnh nhất ở thì này. Lý do là xấp xỉ hai phần ba lượng máu vào gan thông qua hệ thống tĩnh mạch cửa. Ngoài ra do có một lượng máu rất lớn trong các xoang gan nên trong thì này, các tổn thương kém tưới máu trong gan dễ dàng được phát hiện. Các tổn thương tăng tưới máu thường khó phát hiện hơn trong thì hồ máu do chúng có thể bắt thuốc gần bằng với chủ mô gan.

Thì ngoại bào

Mặc dù về lý thuyết, thì ngoại bào (extracellular phase) hay thì cân bằng (equilibrium phase) đã bắt đầu từ sau 1 phút kể từ khi tiêm thuốc vào tĩnh mạch thế nhưng trên thực tế, thời gian tốt nhất để chụp hình thì ngoại bào là sau 2 phút.

Đến thời điểm này, thuốc tương phản từ đã lan tỏa vào tất cả các khoang gian bào, ngoại trừ hệ thần kinh và tinh hoàn. Mức độ bắt thuốc trong thì ngoại bào thể hiện rất rõ ở các mô phù, vốn thường gặp trong các tổn thương u và viêm. Mô sợi cũng thường bắt thuốc mạnh trong thì ngoại bào do chúng có khoang gian bào lớn mặc dù khả năng tưới máu thường rất kém. Các tổn thương di căn thường cũng bắt thuốc rất mạnh vì cũng có khoang gian bào lớn.

Do toàn bộ chất tương phản đều được đào thải qua nước tiểu nên trong thì ngoại bào, chủ mô thận và đường niệu (đài bể thận, niệu quản, bàng quang) đều tăng tín hiệu.

Đối với não, đánh giá các tổn thương ở thì ngoại bào rất có giá trị. Ở khoảng thời gian này, lượng thuốc tương phản từ trong hồ máu đã giảm đáng kể. Mặt khác, do hàng rào máu-não của mô bình thường không cho thuốc tương phản thấm qua để vào khoảng gian bào nên các vùng tăng tín hiệu trong nhu mô não ở thì ngoại bào đều biểu thị cho tình trạng tổn thương hàng rào máu-não.

Về mặt kỹ thuật, chúng ta cần lưu ý hai điểm khi thực hiện chụp hình thì ngoại bào.

  1. Sự phân bố thuốc tương phản trong thì ngoại bào khá ổn định và kéo dài, do vậy các kỹ thuật chụp nhanh không còn quan trọng nữa.
  2. Xóa mỡ là một yêu cầu gần như bắt buộc vì mỡ có tín hiệu cao khiến chúng ta có thể không phân biệt được với mô bắt thuốc trong thì này. Tuy nhiên chúng ta lại không nên dùng chuỗi xung STIR để xóa mỡ. Do T1 của mô bắt thuốc bị ngắn lại dưới tác dụng của thuốc tương phản từ, việc sử dụng thời đảo TI ngắn trong chuỗi xung STIR có thể làm mất cả tín hiệu của mỡ lẫn của mô bắt thuốc.

4. THUỐC TƯƠNG PHẢN ĐẶC HIỆU TẾ BÀO GAN

Thuốc tương phản đặc hiệu tế bào gan có thể được chia thành hai nhóm: nhóm thứ nhất có chứa gado (Gd3+) và cũng là các chất chelate; nhóm thứ hai là một hợp chất của mangan (Mn2+).

Các chelate gado

Gắn thêm một cấu trúc thích hợp vào một loại chelate gado ngoại bào có thể khiến cho nó di chuyển qua được màng tế bào gan. Hai chất hiện được phép sử dụng trong lâm sàng là gadobenate dimeglumine (Gd-BOPTA) và gadoxetic acid disodium (Gd-EOB-DTPA).

Giống như các chelate gado hoạt động ngoại bào khác, các chelate đặc hiệu tế bào gan này cũng có tác dụng ngoại bào như đã thảo luận trong phần trước, vì vậy chúng cũng được lọc và thải qua thận. Tuy nhiên do khả năng được tế bào gan hấp thụ, chúng cũng được đào thải qua đường mật, vào ruột và theo phân ra ngoài.

Khoảng từ 5 đến 10 phút sau khi được tiêm vào tĩnh mạch, các thuốc tương phản từ sẽ phân bố qua đường mạch máu vào khoang ngoại bào và tế bào gan. Ở các phim muộn sau 30 phút, phần thuốc trong khoang ngoại bào hầu như đã được đào thải hết nên chủ yếu chúng chỉ còn trong tế bào gan, đường mật, ở phần đầu ruột non, và dĩ nhiên ở cả hệ thống góp của thận.

Hợp chất mangan

Chỉ có một hợp chất mangan được chấp thuận cho sử dụng trong lâm sàng là mangafodipir trisodium (Mn-DPDP). Thật ra chất tương phản này cũng có thể được bắt giữ bởi các mô có quá trình chuyển hóa ái khí như tụy, vỏ thận và một số mô khác nhưng hiện tại nó chỉ được dùng với mục đích chẩn đoán các tổn thương của gan.

4. THUỐC TƯƠNG PHẢN ĐẶC HIỆU HỆ THỰC BÀO

Khác với các chất tương phản từ đã thảo luận ở hai phần trước mà đa phần đều là các chelate gado, chất tương phản từ đặc hiệu hệ thực bào là các hạt nhỏ chứa một lõi oxyt sắt được bọc bên ngoài bằng một lớp vỏ dextran hoặc polysaccharide. Tên gọi chung cho các thuốc có kích thước hạt lớn là SPIO (superparamagnetic iron oxide) và cho các thuốc có kích thước hạt cực nhỏ là USPIO (ultrasmall superparamagnetic iron oxide). Nhìn chung các thuốc tương phản này đều bị bắt giữ và tiêu hủy bởi các tế bào hệ lưới nội mô có trong gan và lách, các đại thực bào, các hạch lympho và tủy xương. Hoạt tính sinh học của chúng phụ thuộc vào kích thước hạt và lớp vỏ polysaccharide bọc bên ngoài hạt.

Superparamagnetic Iron Oxide (SPIO)

Nhóm các chất tương phản SPIO, điển hình là ferumoxide (AMI-25), có kích thước từ khoảng 30 đến 1000 nm. Do có kích thước khá lớn nên sau khi được tiêm vào máu qua đường tĩnh mạch, chúng nhanh chóng bị thực bào và giảm nhanh nồng độ trong máu (bán hủy) trong khoảng thời gian không quá 60 phút. Khoảng 80% lượng thuốc bị bắt giữ bởi các tế bào Kuffer trong hệ lưới nội mô của gan; 20% còn lại bị bắt ở lách và tủy xương. Do vậy các thuốc SPIO rất hay được dùng để chẩn đoán các tổn thương của gan. Thời điểm được chọn để thực hiện chụp hình là 30 phút sau tiêm và có thể kéo dài đến 4 giờ.

Về tác dụng cộng hưởng từ, các thuốc SPIO có tác dụng làm giảm T2 mạnh hơn tác dụng làm giảm T1. Do vậy trên các hình trọng T2 hoặc T2*, mô gan bình thường giảm tín hiệu rõ rệt. Các hình trọng T1 dù hạn chế hơn nhưng vẫn có ích khi được chụp tại nhiều thời điểm cách nhau vài phút trong khoảng thời gian 10 phút sau tiêm để so sánh. Ở thời điểm vài phút sau tiêm, mô gan có tăng tín hiệu rồi giảm dần khi lượng thuốc trong máu giảm, bắt đầu khá rõ ở thời điểm 10 phút sau tiêm.

Do cũng có khả năng bị bắt giữ tại lách, hạch lympho và tủy xương nên thuốc SPIO cũng còn được sử dụng để chẩn đoán các tổn thương ở những nơi này tuy ít phổ biến trong lâm sàng.

Ultrasmall Superparamagnetic Iron Oxide (USPIO)

Mặc dù cùng nhóm với các thuốc SPIO, các thuốc USPIO có kích thước nhỏ hơn nhiều, thường dưới 10 nm. Nhờ kích thước siêu nhỏ này, chúng khó bị phát hiện hơn nên tốc độ bị bắt giữ bởi các tế bào hệ lưới nội mô tại gan và lách chậm hơn, nghĩa là chúng tồn tại trong máu lâu hơn (thời gian bán hủy dài hơn). Yếu tố này khiến cho các thuốc USPIO lan tỏa tốt hơn vào khoang gian bào. Cuối cùng tại các hạch lympho và tủy xương, chúng bị hệ thống thực bào tại đây bắt giữ và tiêu hủy.

Về đặc điểm cộng hưởng từ, các thuốc USPIO có tác dụng làm giảm T2 kém hơn so với các thuốc SPIO. Kết quả là tác dụng làm giảm T1 và T2 của các thuốc USPIO không còn khác biệt nhiều lắm. Nghĩa là chúng vừa làm tăng tín hiệu của mô đích trên hình trọng T1, vừa làm giảm tín hiệu của nó trên hình trọng T2.

Khả năng tồn tại khá lâu trong máu và tích tụ muộn tại hạch lympho và tủy xương của các thuốc USPIO đã được ứng dụng để chẩn đoán các tổn thương di căn hạch và tủy xương mặc dù cho đến hiện nay chúng vẫn chưa được phổ biến rộng rãi.

5. NHỮNG ĐIỂM CẦN GHI NHỚ

    • Hình ảnh CT sau tiêm thuốc cản quang và hình ảnh cộng hưởng từ sau tiêm thuốc tương phản từ trông có vẻ giống nhau và có thể làm cho chúng ta ngộ nhận rằng thuốc tương phản từ cũng có khả năng “cản từ”, tương tự như khả năng “cản quang” của thuốc cản quang.
    • Các thuốc tương phản từ được phép sử dụng đa số thuộc nhóm chelate ga Mangan chỉ có một hợp chất là Mn-DPDP. Sắt được dùng dưới dạng các oxyt sắt nhưng được bọc bằng một lớp vỏ dextran hoặc polysaccharide.
    • Các thuốc tương phản từ thường được dùng bằng đường tiêm tĩnh mạch và theo hệ thống mạch máu lan tỏa khắp cơ thể. Trong khoảng 30 giây đầu tiên sau tiêm, thuốc chủ yếu tồn tại trong các động mạch (thì động mạch). Trong khoảng 30 giây tiếp theo, thuốc đã lan tỏa khắp hệ thống mạch máu (thì hồ máu, thì tĩnh mạch cửa). Từ thời điểm 1 phút trở về sau, thuốc bắt đầu ngấm qua hệ thống mao mạch để vào khoang gian bào mặc dù vẫn tồn tại trong hệ thống mạch máu (thì ngoại bào). Mao mạch của hệ thần kinh và tinh hoàn không cho thuốc thấm qua trừ khi chúng bị tổn thương.
    • Về tính đặc hiệu tế bào, hầu hết các thuốc đều có tác dụng ngoại bào và không có tính đặc hiệu đối với bất kỳ loại tế bào nào. Khi được gắn thêm một cấu trúc thích hợp, một số hợp chất chelate gado (Gd- BOPTA, Gd-EOB-DTPA) có thể bị tế bào gan bắt giữ và đào thải theo đường mật  vào  ống  tiêu  hó  Hợp  chất  Mn-DPDP  cũng  có  tác  dụng tương tự đối với tế bào gan. Riêng oxyt sắt dưới dạng các hạt SPIO và USPIO dễ bị hệ thực bào bắt giữ, đặc biệt là tế bào Kuffer của gan, nên cũng được xem như “đặc hiệu” đối với những loại tế bào có khả năng thực bào.
    • Các thuốc tương phản từ nói chung đều có tác dụng làm giảm cả T1 lẫn T2 của mô có “bắt thuốc” tuy mức độ có khác nha Cụ thể, các thuốc chelate gado có tác dụng làm giảm T1 mạnh hơn, cho ra hình ảnh tăng tín hiệu ở các mô có “bắt thuốc” trên các hình trọng T1. Ngược lại các thuốc SPIO lại có tác dụng làm giảm T2 mạnh hơn, cho ra hình ảnh giảm tín hiệu ở các mô có “bắt thuốc” trên các hình trọng T2.

Nguồn: Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 7, NXB ĐHQG TPHCM, Trang 105-112.

 

 

PHẦN 3: NGUYÊN LÝ TƯƠNG PHẢN CỘNG HƯỞNG TỪ

 Một hình ảnh y học chỉ có ích khi nó cho phép chúng ta phân định rõ ràng các cấu trúc giải phẫu, kể cả các cấu trúc bất thường. Nói cách khác, các cấu trúc khác nhau cần được thể hiện trên hình với một mức độ khác biệt nhất định để chúng ta có thể xác định được ranh giới giữa chúng. Trong thực tế, sự khác biệt thường được biểu hiện bằng màu sắc khác nhau, phổ biến hơn là mức độ trắng đen khác nhau. Khi đó mức độ khác biệt trắng đen được gọi là độ tương phản (contrast). Trong thực tế, độ tương phản có thể được xem là một trong những chỉ số quan trọng nhất của một hình ảnh y học. Mục tiêu của phần này tập trung vào việc trình bày các nguyên lý tương phản được sử dụng trong các hình cộng hưởng từ. Nội dung cụ thể bao gồm:

  • Các tham số thời gian và góc lật
  • Nguyên lý tương phản cộng hưởng từ
  • Nguyên lý tương phản trọng T1
  • Nguyên lý tương phản trọng T2
  • Nguyên lý tương phản trọng đậm độ proton

1. CÁC THAM SỐ THỜI GIAN VÀ GÓC LẬT

Để sử dụng được các tính chất thời gian T1 và T2 của các mô, chúng ta cần chọn một thời điểm phù hợp để đo tín hiệu. Thoạt tiên chúng ta có thể cho rằng thời điểm tốt nhất là thời điểm vừa tắt xung kích thích vì lúc này, tín hiệu cộng hưởng từ mạnh nhất. Thế nhưng vấn đề không hoàn toàn đơn giản như vậy. Thứ nhất, lượng tín hiệu thu được trong một lần đo chưa đủ để chúng ta tạo lập được hình ảnh, vì vậy chúng ta cần phải đo nhiều lần. Thứ hai, như vừa lý luận ở trên, sự khác biệt tín hiệu giữa các mô là một yếu tố quan trọng hơn cường độ tín hiệu của từng mô bởi vì chính nó cho phép tạo ra một độ tương phản nhất định giữa các mô. Trong phần này chúng ta thử xem một số tham số thời gian có ảnh hưởng đến độ tương phản này.

Thời kích TR

Như đã nói ở trên, nếu chỉ kích thích một lần rồi đo tín hiệu, lượng dữ liệu của một lần đo như thế không đủ để chúng ta xây dựng ảnh cộng hưởng từ. Trong thực tế, chúng ta phải sử dụng xung kích thích nhiều lần, khoảng thời gian giữa hai lần phát xung kích thích được chọn cho phù hợp và được gọi là thời kích hoặc thời lặp TR (repetition time).

Thời kích TR này có liên quan mật thiết với thời gian T1 của mô. Giả sử chúng ta đang xem xét một mô có thời gian T1. Sau khi xung kích thích đầu tiên được phát ra, chúng ta đợi một khoảng thời gian TR để phát xung thứ hai. Lúc này chúng ta gặp một trong hai tình huống:

1. Thời kích TR dài bằng hoặc hơn hẳn so với T1, hoặc

2. Thời kích TR nhỏ hơn nhiều so với T1

Trong tình huống (1), do thời kích TR dài bằng hoặc hơn T1 nên khi phát xung lần thứ hai, độ từ hóa dọc hầu như đã khôi phục lại hoàn toàn và vì thế, tín hiệu cộng hưởng từ có được sau khi phát xung lần hai cũng giống tín hiệu sau khi phát xung lần một.

Thế nhưng trong tình huống (2), thời kích TR ngắn hơn nhiều so với T1 nên khi phát xung lần hai, độ từ hóa dọc chỉ mới khôi phục một phần (Mz). Ở lần này, độ từ hóa dọc một phần Mz này bị lật ngang vào mặt phẳng xy, tạo ra một độ từ hóa ngang Mxy nhỏ hơn so với độ từ hóa ngang của lần phát xung đầu tiên. Độ từ hóa ngang lần hai này tạo ra tín hiệu lần hai nhỏ hơn so với tín hiệu lần một (Hình 1).

Với những lần phát xung tiếp theo sau được lặp lại sau mỗi khoảng TR, độ từ hóa dọc Mz được khôi phục lại dưới tác dụng của từ trường B0 sẽ khá ổn định và có độ lớn tùy theo sự chênh lệch giữa TR với T1 của mô. Nói một cách cụ thể hơn, chúng ta có kết quả sau:

1. Nếu TR và T1 gần như bằng nhau hoặc TR dài hơn T1, tín hiệu cộng hưởng từ được tạo ra mạnh nhất.

2. Ngược lại, nếu TR ngắn hơn nhiều so với T1, tín hiệu cộng hưởng từ sẽ yếu hơn so với trường hợp (1).


Hình
1: Tác dụng tạo tín hiệu cộng hưởng từ của một thời kích TR ngắn hơn so với thời gian T1 của một mô. (a) Xung kích thích lần đầu tiên làm lật Mo vào mặt phẳng ngang. (b) Xung kích thích lần hai xảy ra khi độ từ hóa dọc Mz 
chỉ mới khôi phục một phần, tạo ra Mxy nhỏ hơn nhiều so với lần một.

Kết quả này sẽ được vận dụng trong Phần 3 để tạo ra hình trọng T1 hay ảnh tương phản theo T1.

Góc lật

Từ trước đến giờ chúng ta vẫn ngầm định với nhau rằng xung kích thích đang được sử dụng là xung 90o, nghĩa là xung kích thích tạo một góc lật 90o. Trong phần này chúng ta xét đến khả năng sử dụng những xung kích thích có góc lật nhỏ hơn 90o.

Thử quan sát Hình 2. Độ từ hóa dọc và độ từ hóa ngang khi góc lật 90o được vẽ bằng các vectơ xám. Trong Hình 2a, chúng ta sử dụng một góc lật lớn gần bằng 90o. Khi đó, độ từ hóa ngang được tạo ra có nhỏ hơn chút ít so với trường hợp góc lật 90o. Bù lại độ từ hóa dọc Mz chưa bị lật hoàn toàn và vẫn còn lại một ít (các vectơ đậm). Kết quả là tín hiệu cộng hưởng từ được tạo ra không giảm bao nhiêu so với trường hợp góc lật 90o.

Quan sát tiếp Hình 2b, chúng ta thấy góc lật khá nhỏ so với 90o. Khi đó, độ từ hóa dọc chỉ bị mất một ít để chuyển thành độ từ hóa ngang, cho ra tín hiệu cộng hưởng từ không mạnh bằng so với khi dùng góc lật lớn. Hơn thế nữa, do độ từ hóa dọc hầu như còn nguyên nên chúng ta mất ít thời gian để khôi phục lại hoàn toàn độ từ hóa dọc. Do vậy nếu chúng ta dùng thời kích TR ngắn, độ từ hóa dọc vẫn được khôi phục hoàn toàn.

Những nhận xét trên cho phép chúng ta rút ra được điều gì? Trước tiên chúng ta cần nhấn mạnh rằng tín hiệu cộng hưởng từ được tạo ra là do độ từ hóa ngang quay quanh trục z, do vậy khi độ từ hóa ngang nhỏ, tín hiệu  cộng hưởng từ yếu. Trong phần trước chúng ta cũng đã biết rằng nếu T1 của mô khá dài thì khi dùng thời kích TR ngắn, chúng ta chỉ có được một độ từ hóa ngang nhỏ, sinh ra một tín hiệu yếu. Tuy nhiên nếu biết cân đối thì trong trường hợp này, chúng ta vẫn có thể thu được một tín hiệu cộng hưởng từ đủ mạnh bằng cách chọn một góc lật thích hợp.


Hìn
h 2: Ảnh hưởng của góc lật đối với độ từ hóa dọc và độ từ hóa ngang. 
(a) Với góc lật lớn gần bằng 90o, độ từ hóa dọc lật hầu như hoàn toàn thành độ từ hóa ngang, chỉ còn lại một ít chưa lật hết. (b) Với góc lật nhỏ hơn nhiều so với 90o, độ từ hóa dọc chỉ lật một ít thành độ từ hóa ngang và hầu như còn nguyên.

Về mặt lý thuyết, nếu chúng ta định dùng một thời kích TR trên một mô có thời gian T1 đã biết, góc lật tối ưu cho phép tạo ra được tín hiệu mạnh nhất có thể được tính bằng công thức sau đây:

Góc tối ưu = arccos(e-TR/T1)

trong đó e ≈ 2,7282 là cơ số của logarit tự nhiên. Góc lật tối ưu ứng với các giá trị TR và T1 cho trước còn được gọi là góc Ernst (Richard Ernst là một trong những người có những đóng góp quan trọng nhất cho kỹ thuật chụp ảnh cộng hưởng từ y học. Năm 1991, ông nhận được giải Nobel vì những đóng góp này).

Như vậy khi chúng ta muốn dùng thời kích TR ngắn nhưng vẫn muốn có được tín hiệu đủ mạnh trên các mô có T1 dài, sử dụng một góc lật nhỏ là một kỹ thuật thích hợp. Vấn đề này sẽ được xem xét lại trong những phần sau khi chúng ta nói đến các kỹ thuật làm giảm bớt thời gian đo tín hiệu cộng hưởng từ.

Thời vang TE

Như chúng ta đã biết, tín hiệu cộng hưởng từ ngay sau khi tắt xung luôn là tín hiệu mạnh nhất. Tuy nhiên vì cần phải thực hiện thêm một số kỹ thuật quan trọng khác trước khi đo tín hiệu nên trong thực tế, chúng ta luôn có một khoảng thời gian nhất định kể từ lúc tắt xung kích thích đến lúc đo tín hiệu. Khoảng thời gian này được gọi là thời vang TE (echo time).

Sở dĩ gọi là thời vang vì tín hiệu đo được lúc này không phải là tín hiệu gốc ban đầu mà là tín hiệu đã được tái lập lại bằng một kỹ thuật thích hợp. Nói cách khác, tín hiệu đo được là tín hiệu vọng lại hay một điểm vang (echo) của tín hiệu ban đầu. Ngay trong phần tiếp theo chúng ta sẽ gặp một kỹ thuật tái lập lại tín hiệu rất độc đáo được dùng trong một chuỗi xung căn bản là chuỗi xung điểm vang spin (viết tắt là chuỗi xung SE).

Cần nhắc lại rằng thời gian T2 chính là thời gian xảy ra hiện tượng suy giảm tín hiệu FID. Do vậy thời vang TE có mối liên hệ chặt chẽ với thời gian T2 của một mô. Khi TE khá nhỏ so với T2, tín hiệu thu được lúc này còn khá mạnh. Tuy nhiên khi TE dài gần bằng T2, tín hiệu thu được sẽ yếu vì đã bị suy giảm nhiều.

Chúng ta cũng biết rằng trong thực tế, do tác động của từ trường cục bộ không đồng nhất vốn luôn tồn tại trong các mô, thời gian suy giảm tín hiệu thực tế còn ngắn hơn nữa. Thời gian này gọi là T2*. Như vậy nếu TE khá ngắn, tín hiệu thu được vẫn còn là tín hiệu chịu ảnh hưởng của T2. Khi TE dài hơn, ảnh hưởng của T2* càng rõ, và tín hiệu thu  được  lúc  này  càng  biểu  hiện  cho  tình  trạng  không  đồng  nhất  của  từ trường cục bộ.

Xung tái lập 180o

Theo như phân tích ở trên, thời vang TE cho phép chúng ta có đủ thời gian để thực hiện một số kỹ thuật cần thiết trước khi đo tín hiệu. Tuy nhiên qua thời gian, số proton quay lệch pha nhau càng nhiều và đây là nguyên nhân của hiện tượng suy giảm tín hiệu FID.

Bây giờ thử quan sát các proton đang quay trong mặt phẳng xy tại một số thời điểm sau khi tắt xung kích thích. Trên Hình 3, mỗi proton được biểu thị bằng một vectơ nhỏ. Ở Hình 3a, các proton sau khi tắt xung kích thích đang cùng pha, tạo ra một vectơ lớn nhất tại vạch xuất phát. Trên hình này, chúng ta xem như trục x là vạch xuất phát. Sau đó do sự khác biệt về tốc độ quay, chúng dần dần lệch pha nhau: các proton quay nhanh hơn vượt dần lên trước, các proton quay chậm rớt lại phía sau như được minh họa trong Hình 3b. Ở đây, proton có vectơ xám chạy chậm và rớt hẳn lại phía sau, nghĩa là nó nằm gần vạch xuất phát (đường chấm đứt đoạn).

Bây giờ, nếu tại thời điểm TE/2, nghĩa là sau khi hết khoảng một nửa thời vang TE, chúng ta phát ra một xung 180o. Tác dụng của xung là làm lật các proton 180o, đồng nghĩa với việc lật úp mặt phẳng xy quanh trục xuất phát ban đầu. Lúc này, các proton đang chạy “lật đật” phía sau “bỗng dưng” lại trở thành những proton dẫn đầu (Hình 3c). Tuy nhiên do chúng vẫn quay chậm hơn nên trong khoảng nửa thời gian TE còn lại, chúng dần bị các pro- ton chạy nhanh bắt kịp. Vì vậy tại đúng thời điểm đo TE như trên Hình 3d, tín hiệu đã được tái lập, tạo ra một điểm vang (echo). Xung 180o được dùng với mục đích này gọi là xung tái lập (refocusing pulse).

Về cơ bản, xung tái lập đã hóa giải được các nguyên nhân làm cho các pro- ton lệch pha nhau do tình trạng không đồng nhất của từ trường cục bộ. Kỹ thuật độc đáo này hiện nay đã trở thành một trong những kỹ thuật căn bản của cộng hưởng từ. Các chuỗi xung điểm vang spin hay spin echo (SE) mà chúng ta sẽ nghiên cứu trong các phần tiếp theo đều dựa trên nền tảng của kỹ thuật này.


Hìn
h 3: Kỹ thuật dùng xung tái lập 180o để thu được một điểm vang cần thiết tại thời điểm đo tín hiệu TE. Trong (a), các proton đang cùng pha tại thời điểm ngay sau khi tắt xung kích thích. Theo thời gian, các proton lệch pha nhau, dẫn đến tình huống của (b) tại thời điểm TE/2. Trong (c), sau khi phát xung tái lập 180o, các proton bị lật qua phía bên đối diện của vạch xuất phát, khiến cho các proton quay chậm lại đứng trước các proton quay nhanh. Cuối cùng vào thời điểm TE như trong (d), các proton lại cùng pha, tạo ra một điểm vang.

2.  NGUYÊN LÝ TƯƠNG PHẢN CỘNG HƯỞNG TỪ

Chúng ta đã biết rằng mục tiêu quan trọng nhất của các kỹ thuật chụp ảnh y học là khả năng phân định rõ ràng các cấu trúc giải phẫu, nhờ đó chúng ta dễ dàng phát hiện các cấu trúc bất thường ngay cả khi kích thước của chúng còn rất nhỏ. Trên một hình trắng đen, các cấu trúc cạnh nhau có thể “phân biệt được” nếu chúng có mức độ trắng-đen khác nhau đủ để mắt phân biệt được.

Khác biệt về mức độ trắng-đen giữa các cấu trúc trên một hình ảnh y học được gọi là độ tương phản (contrast). Yêu cầu tạo ra được một độ tương phản cao giữa các cấu trúc nằm cạnh nhau có thể được xem là một trong những yêu cầu quan trọng nhất của mọi kỹ thuật chụp ảnh y học. Cộng hưởng từ là một kỹ thuật chụp ảnh y học tạo được độ tương phản tốt nhất hiện nay đối với nhiều cấu trúc trong cơ thể.

Theo cách hiểu thông thường, ảnh chụp cộng hưởng từ là hình ảnh phân bố nước và mỡ (chủ yếu là nước) trong các mô cơ thể. Điều này nghe có vẻ như nơi đâu có nhiều nước, nơi đó có nhiều tín hiệu cộng hưởng từ. Cách hiểu giản đơn như vậy chỉ đúng một phần. Trước tiên, như chúng ta đã biết, tỷ lệ nước tự do và nước tù trong mô có ảnh hưởng trực tiếp đến các thời gian hồi giãn của mô: mô có nhiều nước tự do sẽ có các thời gian hồi giãn dài hơn mô có ít nước tự do. Thứ hai, bởi vì tín hiệu cộng hưởng từ bị suy giảm theo thời gian, thời điểm đo tín hiệu có ảnh hưởng trực tiếp đến lượng tín hiệu thu được. Thời gian hồi giãn và thời điểm đo tín hiệu có thể được dùng phối hợp để có được các loại ảnh cộng hưởng từ với những đặc điểm tương phản khác nhau, không hoàn toàn biểu thị cho sự phân bố nước trong các mô cơ thể.

Kỹ thuật chụp ảnh cộng hưởng từ sử dụng cường độ tín hiệu thu được từ các proton của nước và mỡ có mặt trong các mô để tạo ảnh. Cường độ tín hiệu của mô càng mạnh, hình ảnh cộng hưởng từ của mô đó càng trắng. Như vậy, mức độ trắng-đen của mô trên ảnh cộng hưởng từ biểu thị cho cường độ tín hiệu được phát ra từ mô. Trong thực hành lâm sàng, người ta thường dùng thuật ngữ tín hiệu cao (high signal) để mô tả một vùng “trắng” và thuật ngữ tín hiệu thấp (low signal) để mô tả một vùng “đen” trên hình cộng hưởng từ. Khi muốn chỉ rõ sự khác biệt tín hiệu giữa các mô (độ tương phản), người ta dùng các thuật ngữ cường độ mạnh (hyperintensity), cùng cường độ (isointensity) và cường độ yếu (hypointensity).

Để có được một độ tương phản tốt trên ảnh, kỹ thuật chụp ảnh cộng hưởng từ hiện sử dụng nhiều nguyên lý tương phản khác nhau. Trong phần này chúng ta sẽ nghiên cứu ba nguyên lý tương phản cơ bản được sử dụng thường xuyên trong các hệ thống chụp ảnh cộng hưởng từ là:

  1. Nguyên lý tương phản trọng T1 dựa trên sự khác biệt về thời gian T1, cho ra một loại ảnh cộng hưởng từ có tên gọi là hình trọng T1 (T1- weighted image hay T1W)

  2. Nguyên lý tương phản trọng T2 dựa trên sự khác biệt về thời gian T2, cho ra một loại ảnh cộng hưởng từ có tên gọi là hình trọng T2 (T2- weighted image hay T2W)

  3. Nguyên lý tương phản trọng đậm độ proton dựa trên sự khác biệt về đậm độ proton trong mô, cho ra một loại ảnh cộng hưởng từ có tên gọi là hình trọng đậm độ proton (proton density-weighted image hay PDW)

Ngoài ba loại hình ảnh tương phản nêu trên, kỹ thuật cộng hưởng từ cũng sử dụng một số nguyên lý tương phản khác. Chẳng hạn như dựa vào khả năng khuyếch tán của nước trong cơ thể, kỹ thuật cộng hưởng từ có thể tạo ra một loại ảnh được gọi là hình trọng khuyếch tán (Diffusion-weighted  Image hay DWI). Nguyên lý tương phản trọng khuyếch tán rất có giá trị  trong lĩnh vực hình ảnh học thần kinh, đặc biệt là phát hiện tình trạng nhồi máu não giai đoạn sớm giúp các thầy thuốc lâm sàng có cơ sở để thực hiện điều trị tích cực.

3.  NGUYÊN LÝ TƯƠNG PHẢN TRỌNG T1

Một hình trọng T1 được tạo lập dựa trên sự khác biệt thời gian T1 giữa các mô. Để có được một hình như thế, chúng ta cần chọn thời kích TR và thời vang TE sao cho các thời gian T1 khác nhau càng nhiều sẽ phát ra tín hiệu cộng hưởng từ có cường độ khác nhau càng lớn.

Như chúng ta đã biết từ những phần trước, tín hiệu cộng hưởng từ phụ thuộc vào độ lớn của vectơ từ hóa ngang trong mặt phẳng xy. Độ từ hóa ngang này đến lượt nó lại phụ thuộc vào độ lớn của vectơ từ hóa dọc và góc lật a (xem Phần 1): khi a = 90o, độ từ hóa dọc bị lật hoàn toàn thành độ từ hóa ngang; khi a nhỏ hơn 90o, độ từ hóa dọc chỉ bị lật một phần. Trong cả hai trường hợp, độ lớn của vectơ từ hóa dọc có ảnh hưởng đến độ lớn của vectơ từ hóa ngang, và vì vậy ảnh hưởng đến cường độ tín hiệu cộng hưởng từ.

Chúng ta xem lại tình huống ngay trước lần phát xung kích thích đầu tiên. Dưới tác dụng của từ trường ngoài B0, proton trong các mô lúc này cùng nhau tạo thành độ từ hóa thực Mo. Thế rồi xung kích thích thứ nhất được phát ra, độ từ hóa thực Mo bị lật thành độ từ hóa ngang Mxy trong mặt phẳng xy. Sau khi tắt xung, độ từ hóa dọc bắt đầu được khôi phục. Tốc độ khôi phục độ từ hóa dọc ở các mô tùy thuộc vào thời gian T1 của chúng: mô có T1 ngắn khôi phục độ từ hóa dọc nhanh hơn so với mô có T1 dài. Lúc đầu, vectơ từ hóa dọc của các mô có T1 ngắn sẽ lớn hơn vectơ từ hóa dọc của các mô có T1 dài. Dần dà theo thời gian, khác biệt độ lớn giữa các vectơ từ hóa dọc của các mô có T1 dài ngắn khác nhau sẽ bị thu hẹp lại để rồi cuối cùng chúng sẽ bằng nhau và bằng với vectơ từ hóa thực Mo sau một khoảng thời gian đủ lớn tính từ lúc tắt xung kích thích lần đầu.

Tuy nhiên nếu cho phát xung kích thích lần hai tại một thời điểm khá ngắn so với thời điểm phát xung lần một, nghĩa là thời kích TR ngắn, khác biệt thời gian T1 giữa các mô sẽ bộc lộ rõ: các T1 ngắn đã hồi phục độ từ a dọc khá nhiu so với c T1 dài nên trong ln thứ hai phát xung kích thích sẽ có độ từ hóa ngang lớn hơn, tạo ra tín hiệu cộng hưởng từ mạnh hơn các mô có thời gian T1 dài. Ở những lần phát xung tiếp theo với cùng thời kích TR, chúng ta cũng có kết quả tương tự bởi vì độ lớn của vectơ từ hóa dọc hồi phục lại được sau mỗi xung kích thích phụ thuộc vào từ trường ngoài B0 và thời gian T1, vốn là những đại lượng không đổi. Do vậy, chọn một thời kích TR ngắn sẽ bộc lộ rõ ràng sự khác biệt thời gian T1 của các mô. Khi đó, các mô có T1 ngắn sẽ cho tín hiệu mạnh; ngược lại các mô có thời gian T1 dài sẽ cho tín hiệu yếu (Hình 4). Hình ảnh tạo ra dựa trên sự khác biệt T1 được gọi là hình trọng T1 (T1-weighted image).


Hìn
h 4: Hình trọng T1 cắt ngang não ỏ mức não thất bên cho thấy rất rõ cấu trúc chất xám-chất trắng của mô não. Trên hình trọng T1, chất xám có màu xám (vỏ não và các nhân xám trung ương) còn chất trắng có màu trắng. Lý do là do chất trắng có T1 ngắn hơn so với chất xám nên cho tín hiệu mạnh hơn. Chú ý rằng lớp viền thật sáng quanh sọ là lớp mỡ dưới da có T1 rất ngắn. Vùng đen giữa hình ngăn cách bởi một viền trắng là hình ảnh hai não thất bên với tín hiệu rất yếu của dịch não tủy vì có T1 rất dài.

Thế nhưng thời kích TR bao nhiêu mới được gọi là ngắn? Không có một giá trị cụ thể nào như thế. Tuy nhiên để độc giả dễ hình dung, chúng tôi tạm đưa ra một con số dễ nhớ: thời kích TR nhỏ hơn 1000 ms (dưới 1 giây) có thể được xem là ngắn.

Bây giờ đến thời vang TE. Để có được một hình có độ tương phản tốt nhất trên một hình trọng T1, chúng ta cũng cần chọn thời vang TE ngắn vì theo thời gian, tín hiệu cộng hưởng từ sẽ suy giảm dần. Trong thực hành, TE dưới 30 ms có thể được xem như TE ngắn.

Chúng ta có thể tóm tắt một số điểm chính về loại hình trọng T1 như sau:

  1. Một hình trọng T1 được tạo lập bằng cách dùng thời kích TR ngắn cùng với thời vang TE ngắn.

  2. Trên một hình trọng T1, các mô có T1 ngắn sẽ có tín hiệu mạnh (màu trắng) còn các mô có T1 dài sẽ có tín hiệu yếu (màu đen). Cụ thể, mỡ có màu trắng nhất, các mô mềm có màu xám hơn còn các loại dịch cho màu đen trên hình trọng

4.  NGUYÊN LÝ TƯƠNG PHẢN TRỌNG T2

Nguyên lý tương phản thứ hai được xem xét trong phần này dựa vào sự khác biệt thời gian T2 giữa các mô. Chúng ta cần nhớ lại rằng theo thời gian, tín hiệu cộng hưởng từ sẽ yếu dần do hiện tượng suy giảm cảm ứng tự do FID. Thời gian suy giảm tín hiệu chính là thời gian T2. Nếu dùng thời vang TE ngắn, nghĩa là nếu đo tín hiệu thật sớm, sự suy giảm tín hiệu của các mô lúc này chưa nhiều nên sự khác biệt tín hiệu giữa các mô không rõ.

Thế nhưng nếu đo tín hiệu trễ hơn, nghĩa là thời vang TE dài, các mô có T2 ngắn sẽ bị mất khá nhiều tín hiệu còn các mô có T2 dài lúc này chỉ suy giảm một ít, làm cho sự khác biệt tín hiệu giữa các mô có thời gian T2 khác nhau rõ ràng hơn (Hình 5). Hình ảnh thu được dựa trên nguyên lý tương phản do thời gian T2 này được gọi là hình trọng T2 (T2-weighted image).

Theo nguyên lý này, chúng ta cần dùng thời vang TE dài để bộc lộ rõ sự khác biệt tín hiệu giữa các mô có thời gian T2 khác nhau. Như chúng ta đã biết trong phần trước, thời vang dài ngắn không có một mốc cụ thể. Thông thường, thời vang TE lớn hơn 80 ms có thể được xem là TE dài.

Thế nhưng không giống như trong nguyên lý tương phản trọng T1, ở đó chúng ta cần dùng thời kích TR ngắn để có được sự khác biệt tín hiệu giữa các mô dựa trên T1, trong nguyên lý tương phản trọng T2, chúng ta cần dùng thời kích TR dài để cho các mô có đủ thời gian hồi phục hoàn toàn vectơ từ hóa dọc, để rồi sau đó nó sẽ lật thành vectơ từ hóa ngang, phát ra tín hiệu cộng hưởng từ có cường độ mạnh nhất có thể có. Trên cơ sở tín hiệu cộng hưởng từ sau khi ngừng phát xung kích thích, tốc độ suy giảm tín hiệu sẽ được tận dụng để tạo ra độ tương phản.

Nói tóm lại, chúng ta cần nhớ một số điểm chính yếu về hình trọng T2 như sau:

  1. Hình trọng T2 được tạo lập bằng cách dùng thời kích TR dài cùng với thời vang TE dài.

  2. Trên một hình trọng T2, các mô có T2 dài sẽ có tín hiệu mạnh (màu trắng) còn các mô có T2 ngắn sẽ có tín hiệu yếu (màu đen). Cụ thể, các chất dịch như dịch não tủy có màu trắng nhất, các mô mềm có màu xám hơn. Các mô có tín hiệu suy giảm cực nhanh (T2 cực ngắn) như vỏ xương hầu như không có tín hiệu nên rất đen trên hình trọng T2.


Hìn
h 5: Một hình trọng T2 cắt dọc đứng vùng cột sống thắt lưng cho thấy rõ các đốt sống, đĩa đệm, các thành phần trong ống sống và các mỏm ngang của đốt sống. Một điểm rất đáng chú ý là dịch não tủy trong ống sống rất trắng trên hình trọng T2 do có thời gian T2 dài. Chúng bao quanh một vệt đen là phần cuối của chóp tủy kéo dài thành chùm đuôi ngựa.

5. NGUYÊN LÝ TƯƠNG PHẢN TRỌNG ĐẬM ĐỘ PROTON

Ngoài hai nguyên lý tương phản đã nêu, người ta còn dùng nguyên lý tương phản  dựa  trên  đậm  độ  của  proton  trong  các  mô  cơ  thể, cho  ra  loại  hình trọng đậm độ proton (proton density-weighted image hay PDW).

Như chúng ta đã biết, tín hiệu cộng hưởng từ thu được ngay sau khi tắt xung kích thích về nguyên tắc chỉ phụ thuộc vào đậm độ pro- ton có trong mô, nghĩa là phụ thuộc vào lượng nước và mỡ trong mô. Muốn thu được tín hiệu ở giai đoạn này, chúng ta cần dùng thời kích TR đủ dài để có được tín hiệu tốt nhất kèm với thời vang TE ngắn để làm giảm bớt sự suy giảm tín hiệu (Hình 6).


Hình
6: Một hình trọng đậm độ proton cắt ngang não qua một lớp cắt nằm trên mức não thất bên.

Thế nhưng như chúng ta đã biết, tín hiệu cộng hưởng từ chỉ phản ánh một cách tương đối đậm độ proton trong mô. Tỷ lệ giữa lượng nước tù và nước tự do trong mô làm thay đổi các thời gian hồi giãn đặc trưng của mô, và do vậy tín hiệu cộng hưởng từ của mô không hoàn toàn biểu thị cho đậm độ proton trong mô. Độ xê dịch hóa học cũng là một yếu tố làm thay đổi tín hiệu. Chính vì vậy một số tác giả đề xuất không gọi là hình trọng đậm độ proton mà gọi là ảnh trung gian (intermediate-weighted image). Tuy nhiên thuật ngữ hình trọng đậm độ proton đã được sử dụng phổ biến nên trong cuốn sách này nó vẫn được sử dụng.

Để kết thúc phần này, chúng ta tóm tắt ba nguyên lý tương phản cơ bản bằng cách so sánh các tham số TR và TE được dùng cho mỗi loại tương phản (Hình 7).

  1. Thời kích TR và thời vang TE đều ngắn sẽ tạo ra hình trọng T1

  2. Thời kích TR và thời vang TE đều dài sẽ tạo ra hình trọng T2

  3. Thời kích TR dài còn thời vang TE ngắn sẽ tạo ra hình trọng đậm độ proton

  4. Thế còn trường hợp thời kích TR ngắn còn thời vang TE dài? Nói chung chúng không tạo ra được một hình ảnh có ý nghĩa về độ tương phản vì khi dùng TR ngắn, khác biệt tín hiệu giữa các mô có nguồn gốc từ sự khác biệt thời gian T1 nhưng vì lại dùng thời vang TE dài nên sự khác biệt tín hiệu lại không còn đáng kể nữa do lúc này tín hiệu đã bị suy giảm nhiều.

Hình 7. Các dạng tương phản hình ảnh do phối hợp TR và TE.

6. NHỮNG ĐIỂM CẦN GHI NHỚ

Trong phần này chúng ta đã xem xét ba nguyên lý tương phản thường được dùng khi tạo lập ảnh cộng hưởng từ. Dưới đây chúng ta tóm tắt một số khái niệm quan trọng.

  • Khi chụp ảnh cộng hưởng từ, sự khác biệt cấu trúc giữa các mô được xác định bằng sự khác biệt về cường độ tín hiệu giữa chúng. Thông thường, cường độ tín hiệu được biểu hiện trên hình bằng mức độ trắng đen: cường độ càng cao, cấu trúc càng trắng. Mức độ khác biệt trắng đen khi này được gọi là độ tương phản của hình.

  • Để có được đủ dữ liệu cho một ảnh cộng hưởng từ, chúng ta cần phải phát xung kích thích nhiều lần, tương ứng với nhiều lần đo tín hiệu. Khoảng cách thời gian giữa hai lần phát xung kích thích được gọi là thời kích TR. Khoảng cách thời gian từ khi phát xung kích thích đến lúc thực hiện đo tín hiệu được gọi là thời vang TE. Mỗi tín hiệu tại thời điểm đo được gọi là điểm vang (echo).

  • Ngoài thời kích TR và thời vang TE, người ta còn có thể dùng một góc lật a nhỏ hơn 90o. Mục đích là chỉ lật một phần vectơ từ hóa dọc thành vectơ từ hóa ngang đủ để tạo ra một lượng tín hiệu cần thiết, giảm bớt thời gian khôi phục hoàn toàn vectơ từ hóa dọc.

  • Có ba nguyên lý tương phản cơ bản được dùng trong kỹ thuật chụp cộng hưởng từ: nguyên lý trọng T1 sử dụng TR và TE ngắn; nguyên lý trọng T2 sử dụng TR và TE dài; nguyên lý trọng đậm độ proton sử dụng TR dài và TE ngắn.

  • Trên một hình trọng T1, chúng ta dùng một thời kích TR ngắn để bộc lộ rõ sự khác biệt cường độ tín hiệu giữa hai mô có thời gian T1 khác nhau: mô có T1 ngắn hầu như đã khôi phục hoàn toàn độ từ hóa dọc, cho ra độ từ hóa ngang ở lần kích thích tiếp theo khá lớn; trong khi đó mô có T1 dài chỉ khôi phục được một phần nên độ từ hóa ngang tương ứng ở lần kích thích tiếp theo sẽ nhỏ. Khi đó nếu đo tín hiệu tại một thời điểm khá ngắn sau khi phát xung kích thích (thời vang TE ngắn), tín hiệu của mô có T1 ngắn sẽ cao còn tín hiệu của mô có T1 dài sẽ thấp.

  • Trên một hình trọng T2, chúng ta tận dụng sự khác biệt thời gian T2 giữa các mô, nghĩa là tốc độ suy giảm tín hiệu: mô có T2 càng ngắn, tín hiệu suy giảm càng nhanh. Trước tiên chúng ta cần dùng thời kích TR đủ dài để độ từ hóa dọc của các mô đều khôi phục hoàn toàn, cho ra độ từ hóa ngang tốt nhất có thể có. Sau đó phát xung kích thích và thực hiện đo tín hiệu tại một thời điểm khá dài (thời vang TE dài). Lúc này các mô có thời gian T2 ngắn hầu như đã mất hết tín hiệu; các mô có thời gian T2 dài chỉ mất một ít, cho ra một hình trọng T2, trong đó mô có T2 dài sẽ có tín hiệu cao (màu trắng) còn mô có T2 ngắn sẽ có tín hiệu thấp (màu đen).

  • Trên một hình trọng đậm độ proton, chúng ta tận dụng sự khác biệt giữa đậm độ proton của các mô để tạo độ tương phản trên hình bằng cách chọn thời kích TR dài và thời vang TE ngắ Thời kích TR dài cho phép các mô khôi phục hoàn toàn độ từ hóa dọc, tạo ra một độ từ hóa ngang lớn nhất trong lần kích thích tiếp theo. Thời vang TE ngắn cho phép đo được tín hiệu “thật” của các mô vì lúc này tín hiệu ở các mô chưa bị mất nhiều. Sự khác biệt tín hiệu lúc này biểu thị một cách tương đối sự khác biệt của đậm độ proton trong mô.

Tham khảo: 

  1. Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 3, NXB ĐHQG TPHCM, Trang 35-48.
  2. Mriquestions.com
  3. Radiopaedia.org