Lưu trữ cho từ khóa: Nguyên lý và Kỹ thuật chụp MRI

PHẦN 8: KỸ THUẬT CHỤP CỘNG HƯỞNG TỪ TIM MẠCH

Nói chung, các phương pháp chụp hình chẩn đoán như X quang quy ước, CT, siêu âm và cộng hưởng từ đều là các kỹ thuật chụp tĩnh, nghĩa là chụp một vật tại một thời điểm (khoảnh khắc) nhất định. Do vậy chúng đều gặp phải những vấn đề giống nhau khi chụp những vùng cơ thể có các cơ quan chuyển động như ngực và bụng.

Vấn đề còn phức tạp hơn khi chụp hình hệ thống tim mạch. Hoạt động co bóp của tim và dòng chảy của máu biểu hiện cho chức năng của chúng. Vì thế chúng ta không những chẳng có cách gì để làm cho chúng “đứng yên hoặc chảy chậm lại một chút” mà còn phải tìm cách ghi nhận đúng thực trạng hoạt động của chúng. Trong phần này chúng ta bàn luận chủ yếu về các kỹ thuật mạch đồ cộng hưởng từ MRA (MR Angiography), dành một phần của phần cho kỹ thuật tâm đồ cộng hưởng từ (cardiac MR). Ngoài ra, các kỹ thuật dựng hình, mặc dù không phải là kỹ thuật chụp mạch máu nhưng vì rất thường được sử dụng trong lĩnh vực này nên cũng được phân tích ở đây. Nội dung cụ thể bao gồm:

  • Hiệu ứng dòng chảy
  • Mạch đồ cộng hưởng từ có thuốc tương phản
  • Kỹ thuật mạch đồ máu đen
  • Kỹ thuật mạch đồ máu sáng
  • Tâm đồ cộng hưởng từ
  • Kỹ thuật dựng hình

1. HIỆU ỨNG DÒNG CHẢY

Dòng máu chảy trong lòng mạch cũng giống như các chất lỏng chảy trong lòng ống, nghĩa là chúng cũng tuân theo các định luật thủy động học trong y học được đề cập đến trong lĩnh vực huyết động học (hemodynamics). Ngoài ra dưới tác dụng của các xung và thang từ, dòng máu đang chảy có những biểu hiện về mặt cộng hưởng từ (tín hiệu) khác hẳn với các mô tĩnh xung quanh, sinh ra các hiệu ứng dòng chảy (flow effect).

Dòng máu trong lòng mạch

Dòng máu chảy vốn rất phức tạp, tùy thuộc vào hoạt động của tim (thì tâm thu, thì tâm trương), kích thước của mạch máu (động mạch chủ và các nhánh), loại mạch máu (động mạch, tĩnh mạch, mao mạch, xoang tĩnh mạch), hướng máu chảy (điểm phân chia mạch máu, chỗ rẽ ngoặt), tình trạng bệnh lý của mạch máu (chỗ phình, mảng xơ vữa) và rất nhiều các yếu tố khác. Tuy nhiên để cho đơn giản và phù hợp với bối cảnh thảo luận về cộng hưởng từ, chúng ta tạm phân chia tình trạng dòng chảy trong lòng mạch thành ba loại: dòng chảy đều (laminar flow), dòng chảy dồn (plug flow) và dòng cuộn xoáy (turbulent flow).

Với dòng chảy đều, vận tốc của các proton đều như nhau, bất kể vị trí của chúng trong lòng mạch (Hình 1a). Ngược lại ở dòng chảy dồn, tốc độ của các proton ở gần thành mạch chậm hơn so với các proton ở chính giữa lòng mạch (Hình 1b). Trong khi đó, tình trạng xoáy dòng chỉ xảy ra ở những chỗ kích thước lòng mạch hoặc hướng chảy thay đổi đột ngột, sinh ra các dòng chảy phụ xoáy cuộn, thường gặp ở chỗ phình mạch, sau đoạn hẹp, chỗ tách các nhánh từ các động mạch lớn (Hình 1c).


Hình 1:
(a) Dòng chảy đều. (b) Dòng chảy dồn. (c) Dòng cuộn xoáy.

Tính chất cộng hưởng từ của dòng máu

Vì nước chiếm một lượng lớn trong máu và hầu như ở dạng tự do, thời gian T1 và T2 của máu đều khá dài, chỉ ngắn hơn chút ít so với T1 và T2 của dịch não tủy. Do vậy nếu không chuyển động, máu sẽ có tín hiệu thấp trên hình trọng T1 và tín hiệu cao trên hình trọng T2, gần giống với tín hiệu của dịch não tủy. Tuy nhiên do chuyển động liên tục, tín hiệu của dòng máu bị thay đổi. Sự thay đổi này do những nguyên nhân được lý giải sau đây:

  1. Trong quá trình chụp hình cộng hưởng từ, các xung và thang từ được thiết kế để chúng tác dụng lên các mô đứng yên. Cụ thể, trong các chuỗi xung điểm vang spin SE, xung tái lập 180o sẽ tác dụng lên đúng các mô đã được kích hoạt bởi một xung kích thích trước đó tại đúng vị trí đã định sẵn. Tuy nhiên do máu chuyển động liên tục, khối máu được kích hoạt bằng xung kích thích đã trôi qua khỏi vị trí ban đầu vào lúc phát xung tái lập khiến pha của các proton trong khối máu này không được tái lập. Chúng ngày càng lệch pha nhau nhiều hơn nên không tạo ra được tín hiệu nào.

  2. Tình trạng cũng gần như thế dưới tác động của các thang từ. Chúng ta đã biết rằng các thang từ chọn lớp và thang mã tần số đều có một thùy khử pha, sau đó là một thùy hồi pha để điều chỉnh lại pha của các proton do tác dụng của thùy khử Thế nhưng do dòng máu chuyển động nên vào thời điểm hồi pha, vị trí của khối máu không còn ở đúng vị trí ban đầu nên tác dụng của thùy hồi pha không còn thích hợp như trước nữa. Kết quả là thùy hồi pha không điều chỉnh được pha của các proton, dẫn đến chúng ngày càng lệch pha nhau nhiều hơn.

  3. Khi thực hiện một chuỗi xung, người ta thường phải lập lại các xung nhiều lần sau mỗi khoảng thời kích TR. Lúc này nếu so với các mô đứng yên trong lớp cắt, khối máu đang chảy vào lớp cắt đó nhận được ít các xung hơn. Điều này đồng nghĩa với việc độ từ hóa dọc của nó còn nguyên vẹn và lớn hơn so với các mô đứng yên xung quanh. Nói cách khác, các mô đứng yên đã bị bão hòa nhiều còn khối máu đang di chuyển vào lớp cắt hầu như không bị bão hòa Nếu lúc này nó bị kích thích, tín hiệu của nó sẽ cao hơn.

Hiệu ứng dòng chảy

Các đặc điểm cộng hưởng từ vừa nêu cùng với các đặc điểm huyết động ở trên cùng nhau tạo ra ba hiệu ứng dòng chảy (flow effect) sau đây:

  1. Hiệu ứng trống dòng. Hiệu ứng trống dòng (flow void) là tình trạng mạch máu “trống trơn” không có tín hiệu và gặp ở các hình chụp bằng các chuỗi xung điểm vang spin, nhất là khi thời vang TE khá dài (hình trọng T2). Trong các chuỗi xung này, khối máu đang chuyển động chỉ nhận được một xung kích thích mà không nhận được xung tái lập, khiến cho tình trạng lệch pha của các proton trong khối máu do tác dụng của các thang từ và của môi trường xung quanh không được điều chỉnh. Kết quả là trong lòng mạch không có tín hiệu và cho ra màu đen (Hình 2).


Hìn
h 2: Hiệu ứng trống dòng trên hình trọng T2 được chụp bằng chuỗi xung điểm vang spin. Hai mũi tên phía trên chỉ vào hai động mạch não giữa (MCA) phải và trái. Mũi tên phía dưới chỉ vào xoang tĩnh mạch dọc trên.

  1. Hiệu ứng nội dòng. Như đã nói ở trên, khối máu đang di chuyển vào một lớp cắt bị bão hòa ít hơn so với các mô đứng yên trong lớp cắt và do vậy nó có tín hiệu cao hơn so với các mô này. Khi đi càng sâu vào các lớp cắt kế tiếp, khối máu càng nhận được nhiều xung và ngày càng bị bão hòa nhiều hơn. Tuy nhiên do phần máu nằm ngay trung tâm lòng mạch chảy nhanh hơn so với phần máu nằm sát thành mạch (dòng chảy dồn), phần máu trung tâm thoát được nhiều xung và bị bão hòa ít hơn, cho ra tín hiệu cao hơn phần máu cận thành (Hình 3). Kết quả này được gọi là hiệu ứng nội dòng (inflow effect).

  2. Hiu ng cận thành. Bên trong dòng chảy dồn, phần máu trung tâm chảy nhanh và có tốc độ đều hơn so với phần máu ở vùng sát thành mạch (Hình 4). Ở mức độ các voxel, điều này có nghĩa là các proton trong các voxel sát thành mạch có các tốc độ khác nhau nhiều, làm cho các proton lệch pha nhau nhiều hơn. Khi đó, tín hiệu chung của toàn voxel bị mất, gây ra tình trạng mất tín hiệu ở vùng cận mạch.


Hìn
h 3: Hiệu ứng nội dòng: lúc đầu khối máu chảy vào vùng đang chụp không bị bão hòa nên cho tín hiệu mạnh hơn so với các mô đứng yên. Càng vào trong sâu, khối máu càng bị bão hòa nhiều hơn nhưng phần trung tâm vẫn có tín hiệu mạnh hơn phần cận thành.


Hình 4:
Hiệu ứng cận thành: các voxel sát thành mạch chảy chậm và không đều bằng các voxel trung tâm, dẫn đến tín hiệu của dòng máu sát thành mạch bị mất.

Mạch đồ cộng hưởng từ MRA

Khả năng ghi nhận được sự chuyển động của máu trong lòng mạch so với các mô đứng yên xung quanh đã cho phép sử dụng các kỹ thuật cộng hưởng từ để đánh giá tình trạng bệnh lý của mạch máu. Hình ảnh mạch máu thu nhận được dù vẫn có những khác biệt so với hình mạch máu đồ chụp bằng X quang thường quy nhưng nhìn chung cả hai phương pháp đều có mục đích giống nhau và cho ra kết quả hình ảnh với rất nhiều đặc điểm tương tự. Vì lẽ đó, các phương pháp cộng hưởng từ dùng để chụp hình mạch máu cũng được gọi bằng một tên tương tự là mạch máu đồ cộng hưởng từ hay viết gọn hơn là mạch đồ cộng hưởng MRA (MR Angiography).

Mới nghe qua, chúng ta cứ ngỡ rằng chụp mạch máu cộng hưởng từ phải dùng đến thuốc tương phản, tương tự như chụp mạch máu bằng X quang hoặc CT phải dùng đến thuốc cản quang. Điều này chỉ đúng một phần. Các kỹ thuật mạch đồ cộng hưởng từ MRA có thể sử dụng thuốc tương phản hoặc có thể không. Khả năng không cần sử dụng thuốc tương phản là một ưu điểm hết sức tuyệt vời của cộng hưởng từ so với các kỹ thuật khác.

Các kỹ thuật mạch đồ cộng hưởng không dùng thuốc tương phản được chia thành hai nhóm: kỹ thuật máu tối (dark blood) hay máu đen (black blood) và kỹ thuật máu sáng (bright blood) hay máu trắng (white blood). Trong các kỹ thuật máu tối, người ta sử dụng hiệu ứng trống dòng hoặc một phương pháp khác để làm mất tín hiệu của dòng chảy, cho phép khảo sát và đánh giá chính xác hơn tình trạng của thành mạch. Ngược lại, các kỹ thuật máu sáng sử dụng hiệu ứng nội dòng (kỹ thuật TOF) hoặc sự khác biệt pha giữa hai lần chụp dòng mạch (kỹ thuật tương phản pha) để ghi nhận và biểu hiện dòng máu chảy sáng hơn mô xung quanh. Kỹ thuật TOF và kỹ thuật tương phản pha sẽ được bàn luận trong Phần 4.

Mặc dù các mạch đồ cộng hưởng đều có thể dùng phương pháp chụp hai chiều (2D) hoặc chụp ba chiều (3D) nhưng phương pháp ba chiều vẫn được ưa chuộng hơn. Sau khi thu dữ liệu vào trong k-không gian và dùng thuật toán biến đổi Fourier ba chiều (3DFT) để có được một tập dữ liệu số ba chiều, người ta có thể dùng một phương pháp dựng ảnh ba chiều để tái tạo lại hình ảnh mạch máu. Kỹ thuật tái tạo mạch máu ba chiều hay được sử dụng là MIP (maximum intensity projection).

2. MẠCH ĐỒ CỘNG HƯỞNG TỪ CÓ THUỐC TƯƠNG PHẢN

Như chúng ta đã biết tác dụng của các loại thuốc tương phản từ là làm cho thời gian T1 và T2 của các mô ngắn đi. Trong kỹ thuật chụp hình mạch máu, thuốc tương phản từ chủ yếu là nhóm gado chelate được bơm vào máu qua đường tĩnh mạch với một nồng độ thích hợp để làm cho T1 của máu ngắn hơn hẳn so với các mô đứng yên xung quanh, nhờ đó tín hiệu của máu trong lòng mạch đủ cao để có thể phân định rõ các mạch máu.

Chuỗi xung và các tham số

Trong chụp hình mạch máu có thuốc tương phản, người ta thường dùng phương pháp chụp ba chiều với chuỗi xung điểm vang thang từ có phá nhiễu (spoiled GRE). Thời vang TE cần phải thật ngắn để làm giảm tối đa tình trạng lệch pha của các proton trong máu. Thời kích TR cũng cần phải thật ngắn. Thứ nhất nó bảo đảm cho các mô đứng yên gần như bị bão hòa nên chúng không che khuất các mạch máu. Thứ hai nó bảo đảm cho chúng ta có thời gian ghi nhận đủ tín hiệu ngay trong lúc nồng độ thuốc tương phản còn khá cao trong động mạch. Góc lật cũng thường khá nhỏ, thay đổi trong khoảng 20o-45o, tương ứng với thời gian TR dưới 10 ms.

Để giảm bớt thời gian chụp, người ta còn điều chỉnh mặt phẳng chụp theo vị trí giải phẫu của mạch máu, chẳng hạn chụp theo mặt phẳng dọc nghiêng (sagittal oblique) đối với động mạch chủ (Hình 5). Ngoài ra vì mô mỡ có T1 khá ngắn nên để làm rõ hơn hình ảnh mạch máu, người ta có thể dùng thuốc với liều cao và bơm với tốc độ nhanh (kỹ thuật bơm dồn hay bơm bolus) hoặc phải dùng đến kỹ thuật xóa mỡ dù có tốn thêm thời gian thu nhận tín hiệu.


Hìn
h 5: Phình động mạch chủ đoạn lên ở một bệnh nhân nam 34 tuổi. (a) Hình dọc nghiêng có thuốc tương phản cho thấy giãn rộng gốc động mạch chủ (mũi tên) và một phần cung động mạch chủ đoạn lên. (b) Hình ngang theo hướng dòng máu phụt ra từ tâm thất trái cho thấy giãn rõ gốc động mạch chủ (mũi tên lớn) cùng với dòng máu phụt ngược (mũi tên nhỏ).

Định thời gian bơm thuốc

Do cần phải bảo đảm một nồng độ thuốc tương đối cao trong động mạch khi thực hiện chụp nên chúng ta cần phối hợp nhịp nhàng giữa thời điểm bơm thuốc và thời điểm phát xung chụp. Liều lượng thuốc thông thường là 40-50 mL được bơm với tốc độ 2-2,5 mL/giây, sau đó là 20 mL dung dịch nước muối sinh lý để rửa sạch thuốc trong lòng tĩnh mạch. Thời điểm phát xung có thể khoảng 25 giây sau đó đối với động mạch chủ ngực và 30 giây đối với động mạch chủ bụng.

Nín thở

Nín thở cũng là một động tác quan trọng để bảo đảm hình thu được không bị nhòe, đặc biệt khi cần chụp các mạch máu vùng ngực và bụng. Cho bệnh nhân thở thêm oxy và tăng thông khí có thể giúp bệnh nhân nín thở được lâu hơn, đa số có thể nín thêm được khoảng 25 giây. Dù vậy đối với bệnh nhân già hoặc thể trạng quá kém, nín thở lâu thường không thực hiện được.

3. KỸ THUẬT MẠCH ĐỒ MÁU ĐEN

Dựa trên hiệu ứng trống dòng (flow void) kèm với một phương pháp thích hợp nào đó, người ta có thể làm mất tín hiệu dòng máu đang chảy trong lòng mạch và nhờ đó cho thấy rõ hơn tình trạng của thành mạch (Hình 6). Những kỹ thuật chụp mạch máu loại này được gọi chung là kỹ thuật mạch đồ máu đen (black blood MRA).


Hình 6:
Chụp hình các mạch máu lớn ở tim bằng kỹ thuật máu đen. Trên hình này, dòng máu đang chảy không có tín hiệu (màu đen), làm nổi bật thành mạch của đoạn lên (đầu mũi tên đen), đoạn xuống (đầu mũi tên trắng) của quai động mạch chủ. RPA là động mạch phổi phải.

Để có hiệu ứng trống dòng, người ta sử dụng chuỗi xung điểm vang spin, thường gặp hơn là chuỗi xung nhanh FSE (fast spin echo) với một xâu điểm vang khá dài, càng làm cho lòng mạch đen thêm. Bổ sung thêm cho hiệu ứng trống dòng vốn gây ra bởi tình trạng lệch pha của các proton trong lòng mạch, người ta còn sử dụng nhiều phương pháp khác để làm cho chúng lệch pha nhau nhiều hơn nữa. Chẳng hạn dùng một xung bão hòa tác dụng trên khối máu trước khi nó đi vào lớp cắt định chụp, nhờ đó khi khối máu này đi vào lớp cắt, nó không bị tác dụng của xung kích thích và vì thế không cho tín hiệu. Rõ ràng phương pháp này chỉ có tác dụng tốt khi chúng ta biết rõ hướng của dòng chảy.

Một phương pháp khác hiệu quả hơn, đặc biệt ở những nơi có nhiều mạch máu lớn chảy theo nhiều hướng khác nhau như vùng tim và cung động mạch chủ. Phương pháp này, được gọi là kỹ thuật khử dòng đảo kép (double inversion nulling) sử dụng hai xung đảo 180o.

Trước tiên áp dụng một xung đảo không kèm thang từ để lật độ từ hóa dọc 180o. Loại xung này được gọi là xung đảo không chọn lọc vì nó tác dụng lên toàn bộ khối cơ thể đang cần chụp. Sau đó xung đảo thứ hai được áp dụng kèm với thang từ chọn lớp Gs. Khi này chỉ có các proton trong lớp cắt mới bị tác dụng và đảo ngược tiếp 180o trở lại vị trí ban đầu. Các proton bên ngoài lớp cắt vẫn bị đảo 180o. Khi đó nếu chọn một thời đảo TI thích hợp để độ từ hóa của máu khôi phục về zero, xung kích thích được phát ra lúc này không tác dụng lên dòng máu đang chảy, cho ra tín hiệu trống trong lòng mạch.

Kỹ thuật mạch đồ máu đen hay được sử dụng để chẩn đoán các bệnh lý của thành mạch, nhất là động mạch chủ. Các bệnh lý loại này hay gặp là: phình bóc tách động mạch chủ và tụ máu nội thành (Hình 7).


Hìn
h 7: Tụ máu nội thành ở một bệnh nhân nam 87 tuổi với triệu chứng đau ngực. Hình cắt ngang trọng T1 cho thấy thành mạch ở đoạn xuống của quai động chủ dày lên với tín hiệu tăng lên rõ rệt (mũi tên), phù hợp với tình trạng tụ máu nội thành.

4. KỸ THUẬT MẠCH ĐỒ MÁU SÁNG

Các kỹ thuật mạch đồ máu sáng ghi nhận dòng máu đang chảy trong lòng mạch nhờ vào tín hiệu của nó cao hơn các mô xung quanh. Về cơ bản có hai kỹ thuật mạch đồ máu sáng. Một được gọi là kỹ thuật TOF (time of flight) với nguyên lý dựa trên hiệu ứng nội dòng đã thảo luận ở Phần 1. Loại thứ hai là kỹ thuật tương phản pha (phase contrast) dựa trên sự khác biệt về pha của dòng máu khi nó chảy theo một chiều nào đó.

Kỹ thuật TOF

Kỹ thuật mạch đồ TOF dựa trên hiệu ứng nội dòng, nghĩa là hiện tượng tăng tín hiệu của dòng chảy so với các mô đứng yên khi một khối máu trôi vào một lớp cắt bởi vì nó không bị hoặc ít bị bão hòa hơn so với những mô đó (xem lại Hình 3). Cả hai phương pháp chụp hai chiều và ba chiều với chuỗi xung điểm vang thang từ GRE đều được sử dụng với những ưu khuyết điểm vốn có của chúng.

  1. Trong kỹ thuật TOF hai chiều (2D-TOF), khối máu “mới” chưa bị bão hòa phải “trôi” vào lớp cắt đang được khảo sát không cần quá lớn. Vì vậy kỹ thuật 2D-TOF rất có giá trị khi đánh giá các dòng chảy chậm, nhất là khi cần phân biệt giữa tình trạng chảy chậm với tắc nghẽn (Hình 8). Thời gian TR thường dùng từ 20 đến 50 ms, đủ ngắn để bảo đảm cho các mô đứng yên bị bão hòa và đủ dài để cho khối máu trôi vào lớp cắt chưa bị bão hòa. Góc lật cũng cần điều chỉnh tương tự. Góc lật lớn làm giảm tín hiệu của mô đứng yên (do có độ bão hòa cao) và làm tăng tín hiệu của khối máu đang chảy vào (do có độ bão hòa thấp) nên làm tăng độ tương phản giữa dòng máu chảy với mô đứng yên. Tuy nhiên sau đó khối máu bắt đầu bị bão hòa và giảm tín hiệu nên nếu dòng máu chảy chậm hoặc hầu như không chảy, đặc biệt là trong thì tâm trương, góc lật lớn sẽ làm giảm tín hiệu của dòng máu. Trong thực tế, một góc lật nằm trong khoảng từ 30o đến 60o thường đủ đến bảo đảm “chất lượng tương phản” của hình. Độ dày của lớp cắt cũng cần chọn khá mỏng để bảo đảm luôn có đủ lượng máu mới thay thế, nhất là khi có nghi ngờ tắc nghẽn. Khi đó, độ dày lớp cắt có khi chỉ cỡ 2 mm hoặc mỏng hơn. Ngoài các yêu cầu kỹ thuật vừa nêu, người ta còn sử dụng thêm hai kỹ thuật nữa để làm tăng chất lượng của ảnh. Thứ nhất là dùng các xung bão hòa để làm mất tín hiệu của những dòng chảy ngược như đã mô tả trong Phần 5.5. Thứ hai là dùng một kỹ thuật khử moment thang từ, thường được gọi là kỹ thuật bù dòng, để làm giảm tình trạng lệch pha của các proton trong dòng máu chảy.

  1. Với kỹ thuật TOF ba chiều (3D-TOF), độ phân giải và tỷ lệ tín hiệu/ nhiễu SNR lớn hơn so với kỹ thuật TOF hai chiều. Vì vậy nó đánh giá tốt hơn các vùng máu chảy tốc độ cao, chẳng hạn vùng động mạch cảnh và vùng đa giác Willis (Hình 9). Tuy nhiên đối với các mạch máu có dòng chảy chậm, kỹ thuật khảo sát này không tốt bằng kỹ thuật 2D-TOF.     


Hình 8:
Bệnh lý mạch máu ngoại biên ở một bệnh nhân nam 65 tuổi có triệu chứng thiếu máu ở chân trái. Hình (a) chụp cẳng chân có thuốc tương phản cho thấy có tắc nghẽn ở động mạch kheo (mũi tên lớn) kèm với tình trạng tái cấu trúc ở động mạch chày sau (các mũi tên nhỏ). Động mạch chày trước và động mạch mác có biểu hiện tổn thương nhưng không thấy rõ. Hình (b) chụp bằng kỹ thuật 2D-TOF ở vùng thấp hơn một chút và sử dụng kỹ thuật dựng hình MIP cho thấy động mạch chày sau khá lớn và rõ ràng (các mũi tên lớn); động mạch chày trước chỉ còn rất nhỏ (các mũi tên nhỏ).

So với kỹ thuật chụp có thuốc tương phản, kỹ thuật mạch đồ TOF thuộc loại kỹ thuật không xâm phạm (noninvasive) nên an toàn và tiện lợi hơn. Dẫu vậy trong nhiều trường hợp, sử dụng thuốc tương phản vẫn giúp đánh giá thêm mức độ và phạm vi tổn thương (Hình 8 và 9). Đặc biệt, thời gian chụp khi có dùng thuốc tương phản thường ngắn hơn nhiều.

Kỹ thuật tương phản pha

Đúng như tên gọi của nó, kỹ thuật tương phản pha PC (phase contrast) sử dụng sự chênh lệch pha của dòng máu đang chảy giữa hai lần “chụp” để tính ra tốc độ của dòng chảy. Để làm được điều này, người ta phải có ít nhất hai bộ dữ liệu được ghi nhận cùng lúc hoặc xen kẽ nhau. Hai bộ dữ liệu này hoàn toàn giống nhau đối với các mô đứng yên; với dòng máu đang chảy, khác biệt về pha theo một trục nào đó cho phép tính ra tốc độ chảy của dòng máu (Hình 10).


Hìn
h 9: Hình có thuốc tương phản (a) cho thấy hẹp nặng một đoạn động mạch cảnh trong bên trái còn bên phải bị tắc ở thấp hơn một ít. Tuy nhiên trên hình chụp 3D-TOF ở vùng đa giác Willis (b), tình trạng thông nối vẫn rất tốt vì còn thấy rõ các đoạn A1, động mạch thông trước và thông sau.


Hìn
h 10: Hai hình thu được khi chụp tương phản pha động mạch chủ. Hình (a) được tạo từ tín hiệu với độ lớn thực sự của chúng. Đoạn lên của quai động mạch chủ (đầu mũi tên trắng), đoạn xuống (đầu mũi tên đen) và động mạch phổi gốc (MPA) đều có tín hiệu mạnh. Hình (b) là hình tương phản pha với đoạn xuống quai động mạch chủ sáng (mũi tên đen) vì dòng chảy thuận chiều còn đoạn lên (mũi tên trắng) và MPA đen vì dòng chảy ngược chiều.

Muốn tạo được sự khác biệt pha tùy theo vận tốc, người ta áp dụng một thang từ mã hóa hai thùy theo một trục cho một lần ghi nhận dữ liệu và áp dụng thang từ theo chiều ngược lại cho lần ghi nhận kia. Sự khác biệt về pha hay độ xê dịch pha khi đó tỷ lệ với vận tốc. Độ xê dịch này được điều chỉnh bằng cường độ thang từ và thời điểm áp dụng sao cho chúng nằm trong khoảng từ -180o đến +180o thông qua một tham số của chuỗi xung có tên là tham số mã hóa vận tốc VENC (velocity encoding) được tính theo đơn vị cm/s. Trong thực tế, để đánh giá các dòng chảy chậm như dịch não tủy, giá trị tham số VENC từ 5-10 cm/s; để đánh giá các dòng chảy nhanh trong các động mạch lớn, giá trị tham số VENC từ 80-400 cm/s.

Kỹ thuật tương phản pha tránh được tình trạng bão hòa hay xảy ra trong kỹ thuật TOF. Nó cũng có khả năng loại bỏ tín hiệu cao của các mô đứng yên như mỡ và các sản phẩm của máu. Những mô này vốn có T1 ngắn nên có thể cũng cho ra tín hiệu cao giống như tín hiệu dòng chảy trong kỹ thuật TOF. Dĩ nhiên khuyết điểm chính của kỹ thuật tương phản pha là tốn thời gian chụp.

Tương tự như kỹ thuật TOF, kỹ thuật tương phản pha cũng có thể dùng phương pháp chụp hai chiều (2D-PC) hoặc ba chiều (3D-PC). Để chụp các hình 2D-PC, chúng ta có thể cho bệnh nhân nín thở hoặc chụp qua nhiều giai đoạn của chu kỳ tim. Khi đó các mô đứng yên sẽ được biểu diễn bằng màu xám; dòng chảy theo một hướng có màu sáng và dòng chảy theo hướng ngược lại sẽ có màu đen (xem lại Hình 10). Mức độ xám phụ thuộc vào vận tốc dòng chảy; chảy nhanh sẽ được biểu hiện thật trắng hoặc thật đen. Theo cách này, các hình 2D-PC có thể mã hóa vận tốc bằng các màu khác nhau thay vì mức độ trắng đen, tương tự như kỹ thuật Doppler màu.

Kỹ thuật 3D-PC, so với kỹ thuật 2D-PC, luôn có những ưu điểm tốt hơn về độ phân giải và tỷ lệ tín hiệu/nhiễu SNR. Khuyết điểm chính của nó là tốn thời gian hơn. Một đặc điểm đáng chú ý nữa là trong kỹ thuật 3D-PC, dòng máu cuộn xoáy có thể làm giảm tín hiệu dòng chảy, gây ra tình trạng dương tính giả. Tuy nhiên trong trường hợp có hẹp, dấu hiệu mất dòng chảy ở xa chỗ hẹp là một gợi ý đã có sự thay đổi lớn về mặt huyết động.

5. TÂM ĐỒ CỘNG HƯỞNG TỪ

Sự chuyển động hầu như liên tục của tim là một trở ngại rất lớn đối với các kỹ thuật chụp hình tim và các mạch máu lớn bằng cộng hưởng từ. Tuy nhiên trong những năm gần đây, nhờ những tiến bộ vượt bậc về công nghệ phần cứng và kỹ thuật chụp, người ta đã dần dần khắc phục được trở ngại này. Vì vậy cộng hưởng từ ngày nay đã trở thành một phương tiện chẩn đoán rất có giá trị đối với các bệnh lý tim bẩm sinh và mắc phải, kể cả các mạch máu lớn có liên quan như quai động mạch chủ.

Gác tim

Hoạt động co bóp của tim qua các thì tâm thu và tâm trương tuy là một hoạt động chức năng nhưng lại làm thay đổi cả về vị trí giải phẫu lẫn hình thái của tim và các mạch máu lớn. Trong một chu kỳ co bóp của tim, những thay đổi về mặt giải phẫu này hầu như xảy ra liên tục. Như vậy một hình chụp qua một mặt cắt nếu có thời gian ghi nhận dữ liệu kéo dài, nghĩa là thời gian chụp khá lâu, sẽ chỉ là một hình ảnh chồng chéo của nhiều cấu trúc giải phẫu đã chạy ngang qua mặt cắt đó trong thời gian ghi nhận dữ liệu.

Muốn chụp được một “khoảnh khắc” của tim, chúng ta không thể ghi đủ dữ liệu của khoảnh khắc đó trong một lần ghi, dù rằng hiện tại có những kỹ thuật ghi rất nhanh. Bù lại, do hoạt động co bóp của tim xảy ra có quy luật, mỗi chu kỳ tim đều có một khoảnh khắc “tương tự”. Thay vì ghi một lần tất cả dữ liệu cần thiết để chụp một khoảnh khắc, chúng ta sẽ ghi nhận dữ liệu từ nhiều khoảnh khắc tương tự trong các chu kỳ tim khác nhau. Khi này, tập hợp dữ liệu thu được qua các khoảnh khắc tương tự sẽ cùng nhau tạo ra hình ảnh chung của các khoảnh khắc đó trong mỗi chu kỳ tim.

Với cách làm như vậy, mọi kỹ thuật chụp hình tim cần phải xác định thời điểm chụp và ghi dữ liệu dựa vào các mốc thời gian trong một nhịp đập của tim. Các phương pháp sử dụng chu kỳ tim để xác định thời điểm chụp và ghi dữ liệu được gọi chung là kỹ thuật gác tim (cardiac gating).

Trong kỹ thuật gác tim, người ta có thể dùng điện tâm đồ ECG (electrocar- diography) hoặc mạch đập ngoại biên làm mốc chuẩn cho mỗi nhịp đập. Trong thực tế, phương pháp mạch đập ngoại biên ít được sử dụng vì chúng ta phải mất một thời gian nhất định kể từ lúc tim co bóp đến lúc có được tín hiệu mạch đập.

Theo phương pháp gác tim ECG, sóng R của phức hợp QRS được dùng làm tín hiệu kích hoạt. Khoảng cách R-R là một nhịp đập (một chu kỳ tim). Trong khoảng thời gian R-R, chúng ta có thể dùng một hoặc nhiều xung kích thích, mỗi xung tương ứng với một lần đo tín hiệu (lấy mẫu một điểm vang) và điền một hàng dữ liệu vào k-không gian.

Nếu mỗi nhịp đập chỉ phát một xung kích thích (R-R = TR), thời gian chụp sẽ rất lâu bởi vì chúng ta phải mất nhiều nhịp đập để ghi đủ dữ liệu cho một mặt cắt và cần phải có nhiều mặt cắt để khảo sát toàn bộ tim. Các kỹ thuật hiện nay đều phát nhiều xung kích thích trong một nhịp đập (TR nhỏ hơn nhiều so với R-R) theo một trong hai chế độ:

  1. Với thể thức nhiều-mặt, một-thì (multisection, single-phase mode), sau khi phát xung kích thích (một hoặc nhiều lần) rồi đo tín hiệu cho một mặt cắt, người ta lại tiếp tục kích thích và đo tín hiệu của các mặt cắt khác ngay trong một nhịp đập. Tên gọi nhiều-mặt, một-thì thật ra không chính xác bởi vì thể thức này mặc dù cho phép khảo sát toàn bộ cấu trúc giải phẫu của tim qua nhiều mặt cắt nhưng mỗi mặt cắt đều được khảo sát tại những thời điểm khác nhau (nhiều thì) trong chu kỳ tim chứ không phải một thì.

  1. Với thể thức một-mặt, nhiều-thì (single-section, multiphase mode), một mặt cắt được chụp nhiều lần qua suốt chu kỳ tim, cho thấy nhiều cấu trúc chạy ngang qua mặt cắt trong khoảng thời gian đó. Nếu số lượng hình chụp đủ nhiều và liên tục, loạt hình tại những thời điểm khác nhau của mặt cắt, khi được chiếu khá nhanh, sẽ tạo ra một đoạn phim xi-nê, cho phép khảo sát tình trạng động (chức năng) của tim và các mạch máu lớn. Cách chụp như thế được gọi là chụp cộng hưởng từ ci-nê (cine MRI).

Gác viễn cảnh và gác vọng cảnh

Như đã nói ở trên, sóng R của phức hợp QRS thường được dùng làm tín hiệu kích hoạt quá trình phát xung và lấy mẫu điểm vang. Có hai cách sử dụng sóng R khác nhau, được gọi là phương pháp gác viễn cảnh và gác vọng cảnh.

Trong phương pháp gác viễn cảnh (prospective gating), quá trình phát xung và lấy mẫu tín hiệu chỉ được thực hiện khi nhận được tín hiệu kích hoạt của sóng R và như vậy phụ thuộc hoàn toàn vào tín hiệu kích hoạt. Sau khi chụp xong một chu kỳ tim, quá trình này ngừng lại để chờ tín hiệu kích hoạt của chu kỳ tiếp theo. Nhờ vậy, phương pháp gác viễn cảnh ít bị ảnh hưởng bởi nhịp tim, nhất là trong những trường hợp các nhịp đập không đều.

Ngược lại, phương pháp gác vọng cảnh (retrospective gating) thực hiện đo dữ liệu liên tục qua suốt các chu kỳ tim những vẫn ghi nhận tín hiệu kích hoạt của sóng R như những mốc thời gian. Sau đó trong quá trình dựng ảnh, các mốc này được dùng để ghép dữ liệu từ nhiều chu kỳ tim khác nhau dựa vào khoảng cách giữa chúng đến các mốc. Như vậy trong phương pháp gác vọng cảnh, chúng ta có thể thu được dữ liệu của toàn bộ chu kỳ tim, kể cả khoảng thời gian cuối thì tâm trương.

Hình giải phẫu và hình chức năng

Tựu chung có hai nhóm chuỗi xung được sử dụng trong tâm đồ cộng hưởng từ: một cho thấy rõ cấu trúc giải phẫu và một cho phép đánh giá hoạt động co bóp của tim (chức năng) và các mạch máu lớn.

  1. Nhóm chuỗi xung cho ra hình ảnh giải phẫu cũng được gọi là nhóm chuỗi xung máu tối. Các chuỗi xung trong nhóm này đều thuộc loại chuỗi xung điểm vang spin (SE hoặc FSE) với thời gian chụp dài, cho ra hình ảnh giải phẫu nhờ vào hiệu ứng trống dòng. Nhờ dòng máu chảy đã bị mất tín hiệu, cấu trúc giải phẫu của tim và các mạch máu lớn được hiển thị tốt hơn. Với loại chuỗi xung này, người ta có thể chụp một loạt hình giải phẫu theo nhiều mặt cắt khác nhau qua tim. Loạt hình cắt ngang (Hình 11) hay được dùng trong các bệnh lý tim bẩm sinh.


Hình 11:
Loạt hình cắt ngang qua tim với chuỗi xung điểm vang spin cho thấy cấu trúc giải phẫu tương tự như trên CT. Aa, Ad: ĐMC lên và xuống; MP: ĐM phổi gốc; S, IVC: TMC trên và dưới; RP LP: ĐM phổi phải và trái; RB, LB: Phế quản phải và trái; RV, RA: thất và nhĩ phải; LV, LA: thất và nhĩ trái.

  1. Nhóm chuỗi xung chụp hình ảnh chức năng đa số thuộc loại chuỗi xung điểm vang thang từ GRE với thời gian chụp ngắn, cho ra một loạt hình xi-nê có tín hiệu máu sáng. Trong số này, chuỗi xung SSFP hay true- FISP với các tham số TR = 2,5-10 ms, TE = 1-2 ms, góc lật a = 8-20o rất hay được dùng (Hình 12).


Hình 12:
Hình xi-nê chụp bằng chuỗi xung SSFP theo trục ngắn của tim lần lượt qua các thì: đầu tâm thu, cuối tâm thu, đầu tâm trương, cuối tâm trương.

Các mặt cắt

Ngoài các mặt cắt ngang trục, cắt dọc đứng và cắt dọc trán thông thường, người ta phải thực hiện thêm các mặt cắt quan trọng: mặt cắt theo trục ngắn (short-axis section), mặt cắt theo trục dài (long-axis section) và mặt cắt bốn buồng (four-chamber section). Phương pháp thực hiện được gọi là chụp chếch đôi (double oblique projection). Khởi điểm là một mặt cắt ngang hoặc mặt cắt dọc trán cho thấy rõ hai buồng thất trái và nhĩ trái. Ở đây chúng ta dùng một mặt cắt ngang làm hình dẫn đường khởi điểm.


Hình 13:
Các hình hai buồng dẫn đường. Bên trái là hình cắt ngang khởi điểm, thu được từ loạt hình cắt ngang tương tự như trong Hình 11. Bên phải là hình hai buồng đứng thu được từ hình bên trái và làm hình dẫn đường cho các mặt cắt tiếp theo.

Trong Hình 13 chúng ta có một hình cắt ngang làm hình dẫn đường khởi điểm (hình bên trái). Hình này có thể lấy trong loạt hình cắt ngang tương tự như ở Hình 11. Từ đây chúng ta sẽ thực hiện mặt cắt chếch phải (right oblique projection) để cho ra hình hai buồng đứng ở bên trái của Hình 13. Từ hình hai buồng đứng dẫn đường, chúng ta sẽ có được mặt cắt theo trục ngắn (Hình 14) và mặt cắt theo trục dài (Hình 15).


Hình
14: Hình mặt cắt theo trục ngắn thu được từ hình hai buồng đứng dẫn đường của Hình 13.


Hình
15: Hình mặt cắt theo trục dài thu được từ hình hai buồng đứng dẫn đường của Hình 13.

Để thực hiện mặt cắt bốn buồng, chúng ta dựa vào mặt cắt theo trục ngắn đã thu được từ Hình 14. Bước cắt này được thực hiện theo như mô tả trong Hình 16.


Hình
16: Hình mặt cắt bốn buồng thu được từ mặt cắt theo trục ngắn ở Hình 14.

Một vài ứng dụng lâm sàng

Tâm đồ cộng hưởng từ rất có giá trị trong nhiều bệnh lý tim mạch. Một số ứng dụng lâm sàng thường gặp có thể kể ra là:

  1. Phình bóc tách động mạch chủ (aortic dissection). Cộng hưởng từ là một phương tiện chẩn đoán có giá trị để loại trừ bệnh lý bóc tách động mạch chủ. Nếu được chẩn đoán xác định, các hình ảnh thu được còn có thể cho thấy điểm vào và điểm ra của đoạn bóc tách, kể cả mức độ lan rộng đến các mạch máu lớn của quai động mạch chủ cũng như tình trạng huyết động ở động mạch chủ.

  2. Viêm màng ngoài tim co thắt (constrictive pericarditis). Phương tiện chụp cộng hưởng từ có gác tim bằng ECG cho phép phân biệt bệnh lý cơ tim hạn chế với viêm màng ngoài tim co thắt. Trong trường hợp viêm màng ngoài tim co thắt, màng tim sẽ dày ít nhất 4 mm và do đó làm tăng khoảng cách giữa vách buồng tim với bờ ngoài tim.

  3. Bệnh lý tim bẩm sinh (congenital heart disease). Nhờ khả năng phân định rõ cấu trúc giải phẫu và đánh giá được chức năng cũng như các dòng chảy, kỹ thuật cộng hưởng từ là một phương tiện chẩn đoán thường được sử dụng để đánh giá các bệnh tim bẩm sinh, đặc biệt là các bệnh lý có thông nối giữa các buồng tim.

Ngoài một vài bệnh lý thường gặp được nêu ở trên, các kỹ thuật tâm đồ cộng hưởng từ có thể đánh giá các bệnh lý cơ tim, hoạt động của các van tim, đo kích thước buồng tim, đánh giá dòng chảy. Hiện tại, các kỹ thuật chụp mạch vành bằng cộng hưởng từ cũng đang được nghiên cứu và đánh giá thử nghiệm.

6. KỸ THUẬT DỰNG HÌNH

Dựng hình hay tái định dạng để người xem có thể quan sát được vật ở nhiều góc độ khác nhau trong không gian ba chiều là bước cuối cùng không kém phần quan trọng trong quá trình chụp hình. Do sự phát triển mạnh mẽ của công nghệ máy tính (phần cứng, phần mềm), quá trình dựng hình có thể được thực hiện và cho ra kết quả gần như ngay lập tức. Nhờ vậy trong nhiều tình huống, nó cho phép chúng ta có cơ sở đưa ra những quyết định chụp hình hợp lý và kinh tế hơn.

Tập dữ liệu làm cơ sở để dựng hình là một tập dữ liệu ba chiều. Nếu sử dụng kỹ thuật chụp ba chiều, chúng ta đã có sẵn một tập dữ liệu như thế. Tuy nhiên nếu sử dụng kỹ thuật chụp hai chiều, chúng ta phải “chồng ghép” dữ liệu của các lớp cắt để có được tập dữ liệu ba chiều (Hình 17). Trong trường hợp này, các lớp cắt và khoảng trống giữa chúng cần phải khá mỏng.


Hìn
h 17: Chồng ghép dữ liệu của các lớp cắt ngang để có được tập dữ liệu ba chiều.

Kỹ thuật MPR

Về lý thuyết, cộng hưởng từ cho phép chúng ta chụp trực tiếp mọi mặt cắt theo bất kỳ chiều hướng nào bằng cách điều chỉnh các thang từ chọn lớp sao cho lực tác dụng chung của chúng chỉ làm cho các proton trong lớp cắt định khảo sát có tần số quay phù hợp.

Tuy nhiên thực hiện quá nhiều mặt cắt ở những chiều hướng khác nhau sẽ làm tăng thời gian chụp. Thay vì thế, chúng ta chỉ chụp một số mặt cắt quan trọng và sử dụng một thuật toán thích hợp “cắt” dữ liệu ba chiều đã thu thập được theo một mặt cắt bất kỳ (Hình 18). Kỹ thuật này có tên là tái tạo đa phẳng MPR (multiplanar reformation hay reconstruction).


Hìn
h 18: Dựng lại một mặt cắt chếch để thấy rõ hơn hệ thống đường mật.

Kỹ thuật MIP

Khi chụp mạch máu có thuốc tương phản, tín hiệu của các voxel trong lòng mạch cao hơn hẳn tín hiệu của các mô xung quanh. Nếu tưởng tượng rằng chúng ta đang đứng quan sát hệ thống mạch máu từ một góc độ nào đó, chúng ta sẽ thấy hình ảnh mạch máu hiện rõ hẳn trên một nền tối hơn ở xung quanh (Hình 19).


Hình 19:
Ảnh chụp có thuốc tương phản vùng tim và quai động mạch chủ được dựng lại bằng kỹ thuật MIP cho thấy rõ hình ảnh tim và các mạch máu lớn quanh đó. Dấu hiệu hẹp cục bộ ở động mạch dưới đòn trái biểu hiện bằng một đoạn thu nhỏ dần và mất tín hiệu (đầu mũi tên). Ở đoạn xa (mũi tên) bị mất tín hiệu do thuốc tương phản đậm hơn ở tĩnh mạch cạnh đó.

Kỹ thuật MIP (maximum-intensity projection) sử dụng ý tưởng đơn giản này. Giả thiết rằng người quan sát đứng ở một góc độ nhất định hướng về vật cần quan sát, kỹ thuật MIP sẽ giữ lại các voxel có tín hiệu cao nhất trên mỗi đường thẳng nối từ mắt người quan sát đến vật (tia quan sát). Khi chụp mạch máu có dùng thuốc tương phản (trong cộng hưởng từ) hoặc thuốc cản quang (trong CT), các voxel có giá trị cao nhất trên một tia quan sát đa phần là các voxel của mạch máu. Đối với CT, kỹ thuật MIP có thể dùng để tái tạo lại hình ảnh của khung xương (Hình 20).


Hình 20:
Các tia quan sát từ mắt người quan sát đến vật chỉ nhìn thấy các voxel có giá trị cao nhất. Xương (trên CT) và các mạch máu có tiêm thuốc (trên CT và cộng hưởng từ) thường có các voxel như vậy nên người quan sát có thể nhìn thấy chúng rõ hơn so với các mô xung quanh.

Trong lĩnh vực cộng hưởng từ mạch máu, kỹ thuật MIP cũng có thể được dùng cho cả trường hợp không dùng thuốc tương phản. Với các dữ liệu thu được bằng các kỹ thuật mạch đồ máu sáng, chúng ta có thể dùng kỹ thuật MIP để dựng lại hình ảnh mạch máu (xem lại Hình 8).

Kỹ thuật dựng bề mặt

Trong k thuật dng bề mặt (surface rendering), các voxel nằm ở bờ của một cấu trúc sẽ được xác định và cho hiển thị ra; các voxel còn lại được cho “ẩn đi”, tạo ra một hình ảnh bề mặt của một cấu trúc.

Mặc dù không được phổ biến như các kỹ thuật MIP và MPR, kỹ thuật dựng bề mặt cho phép “quan sát” rõ bề mặt (mặt trong và mặt ngoài) của một cấu trúc. Đặc biệt đối với các cơ quan dạng ống như ống tiêu hóa, khí phế quản hoặc mạch máu, kỹ thuật này cho phép thực hiện các cuộc ngoại soi ảo (virtual exoscopy) hoặc nội soi ảo (virtual endoscopy) như được minh họa trong Hình 21.


Hìn
h 21: Nội soi ảo ruột già (virtual colonoscopy) cho phép nhìn thấy polyp ở cả hai phía khi đi từ trong ra (A) và từ ngoài vào (B).

Kỹ thuật dựng khối vật

Mặc dù mới chỉ được ứng dụng trong thời gian gần đây do các yêu cầu tốc độ xử lý của máy tính quá cao, k thuật dng khối vật (volume rendering) thật ra là trường hợp tổng quát của hai kỹ thuật MIP và kỹ thuật dựng bề mặt. Trong kỹ thuật này, toàn bộ tập dữ liệu ba chiều đều được sử dụng; mỗi voxel được cho hiển thị hoặc không hiển thị dựa trên các ngưỡng của một số tham số được chọn trước, nhờ vậy người quan sát có thể định ra một mức độ trong suốt, cho phép họ “nhìn thấu” vào các cấu trúc sâu hơn.


Hình 22:
(a) Hình ảnh các nhánh động mạch não giữa (các đầu mũi tên) và khối thuyên tắc (mũi tên) được dựng lại bằng kỹ thuật dựng khối vật. (b) Hình chụp tương ứng trong lúc phẫu thuật.

7. NHỮNG ĐIỂM CẦN GHI NHỚ

  • Có thể phân chia tình trạng dòng chảy thành ba loại: dòng chảy đều, dòng chảy dồn và dòng cuộn xoáy. Trong dòng chảy đều, vận tốc của mọi voxel đều như n Trong dòng chảy dồn, các voxel ở trung tâm chảy đều và nhanh hơn các voxel ở sát thành mạch.
  • Ba hiệu ứng dòng chảy đáng chú ý là: hiệu ứng trống dòng bị mất hẳn tín hiệu trong lòng mạch; hiệu ứng nội dòng có tín hiệu dòng chảy mạnh hơn các mô đứng yên xung quanh tuy càng chảy tiếp, tín hiệu càng giảm nhưng vùng trung tâm vẫn mạnh hơn vùng sát thành mạch; hiệu ứng cận thành là một dạng hiệu ứng trống dòng, trong đó dòng chảy sát thành mạch bị mất tín hiệu.
  • Các kỹ thuật mạch đồ cộng hưởng nói chung được chia thành ba nhóm: mạch đồ cộng hưởng có dùng thuốc tương phản từ, mạch đồ máu đen và mạch đồ máu sáng. Mạch đồ máu đen sử dụng hiệu ứng trống dòng và một số kỹ thuật phụ trợ khác để làm mất tín hiệu của dòng chảy trong lòng mạch, cho phép đánh giá được tình trạng của thành mạch. Mạch đồ máu sáng sử dụng hiệu ứng nội dòng, cho ra kỹ thuật chụp TOF. Mạch đồ máu sáng cũng sử dụng độ chênh lệch pha (kỹ thuật tương phản pha) của dòng chảy để tính toán và đánh giá được vận tốc của dòng chảy.
  • Tâm đồ cộng hưởng từ sử dụng kỹ thuật gác tim bằng điện tâm đồ, cho phép chụp một loạt các phim liên tục nhau (phim xi-nê). Bằng cách đó chúng ta có thể đánh giá được chức năng co bóp của tim qua các thì của chu kỳ tim.
  • Các kỹ thuật dựng hình thông dụng trong lĩnh vực hình ảnh y học bao gồm: kỹ thuật MPR, kỹ thuật MIP, kỹ thuật dựng bề mặt và kỹ thuật dựng khối vật. Kỹ thuật MPR cho phép chúng ta xem xét vùng cơ thể đã được chụp theo một mặt cắt bất kỳ, không chỉ là những mặt cắt được thực hiện trong lúc chụp. Kỹ thuật MIP giữ lại những điểm “sáng nhất” khi chúng ta đang quan sát vùng cơ thể đã được chụp từ một góc độ bất kỳ, do vậy kỹ thuật này có thể được dùng để dựng lại hình ảnh xương (trong CT) hoặc hình ảnh mạch máu (CT và cộng hưởng từ). Kỹ thuật dựng bề mặt có thể được dùng trong các cuộc nội soi hoặc ngoại soi ảo vì nó cho phép nhìn thấy bề mặt của vật. Cuối cùng kỹ thuật dựng khối vật cho phép dựng lại toàn bộ khối cơ thể cần khảo sát và có thể “bóc” khối này theo từng lớp. 

Nguồn: Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 8, NXB ĐHQG TPHCM, Trang 113-136.

 

 

 

 

 

 

 

PHẦN 7: CÁC LOẠI THUỐC TƯƠNG PHẢN TỪ

Cũng như thuốc cản quang, thuốc tương phản từ hiện đã được sử dụng rất phổ biến trong lĩnh vực chụp hình cộng hưởng từ. Do vậy, những kiến thức về các loại thuốc tương phản từ cùng cơ chế tác động của chúng sẽ giúp chúng ta biết sử dụng chúng một cách đúng đắn và hiệu quả. Trong phần này, chúng ta sẽ tìm hiểu chi tiết về các loại thuốc tương phản từ qua các nội dung cụ thể như sau:

  • Cơ chế tác động của thuốc tương phản từ
  • Thuốc tương phản ngoại bào
  • Thuốc tương phản đặc hiệu tế bào gan
  • Thuốc tương phản đặc hiệu hệ thực bào

1. CƠ CHẾ TÁC ĐỘNG CỦA THUỐC TƯƠNG PHẢN TỪ

Khi so sánh phim chụp cắt lớp điện toán (computed tomography) hay phim CT có tiêm thuốc cản quang với phim cộng hưởng từ có tiêm thuốc tương phản từ, chúng ta thấy chúng có rất nhiều điểm giống nhau, đặc biệt là độ tương phản giữa các mô trong cơ thể. Điều này thường dẫn đến sự ngộ nhận, cho rằng thuốc tương phản từ cũng có cơ chế tác động giống như thuốc cản quang, nghĩa là nó có khả năng “cản từ”. Thực tế không phải như vậy.

Theo nguyên tắc tạo hình trên phim, hình ảnh X quang quy ước và hình CT biểu thị mức độ hấp thu tia X của các mô cơ thể. Mô hấp thụ tia X càng nhiều, nghĩa là khả năng cản tia hay cản quang càng tốt, hình ảnh của mô trên phim càng trắng. Ngược lại, hình ảnh trên phim cộng hưởng từ biểu thị cường độ tín hiệu được phát ra từ mỗi mô sau khi được kích thích bằng từ trường. Cường độ tín hiệu của mô càng cao, hình ảnh trên phim của mô càng trắng. Như chúng ta đã biết, tín hiệu thu được trong phạm vi cộng hưởng từ y học chủ yếu là tín hiệu từ các proton của nước và mỡ có trong cơ thể. Thuốc tương phản từ, do tính chất thuận từ (paramagnetism) của mình, có tác động trực tiếp lên các proton xung quanh, làm thay đổi cường độ tín hiệu của các proton và vì vậy làm thay đổi độ tương phản của các mô trên phim. Nói cách khác, các thuốc này không hề có khả năng “cản từ” như cảm tưởng ban đầu của chúng ta.

Về mặt hóa học, các chất tương phản từ đa phần đều là các hợp chất có chứa một trong ba nguyên tố: gado (Gd), mangan (Mn) hoặc sắt (Fe). Gado là một nguyên tố thuộc nhóm đất hiếm trong bảng phân loại tuần hoàn. Các hợp chất chelate* của gado (Gd3+) là các thuốc tương phản từ được sử dụng phổ biến nhất hiện nay. Trong các hợp chất của mangan (Mn2+) hiện mới chỉ có mangafodipir trisodium hay Mn-DPDP (Manganese dipyridoxyl diphos- phate) được phép sử dụng. Riêng sắt được sử dụng dưới dạng các oxyt sắt (Fe2+, Fe3+) nhưng được bọc trong một lớp  vỏ dextran hoặc một hợp  chất polysaccharide.

Nhìn chung các thuốc tương phản đều dùng đường tiêm tĩnh mạch; một số ít được dùng bằng đường uống để khảo sát ống tiêu hóa. Chúng ta không thảo luận thuốc tương phản từ đường uống vì chúng ít phổ biến, một mặt do bản thân cộng hưởng từ hiện vẫn còn ít giá trị đối với đường tiêu hóa, mặt khác do các kỹ thuật “kinh điển” hơn như đối quang kép hay nội soi vẫn là những phương tiện rất có giá trị đối với các tổn thương ở đường tiêu hóa nhưng có chi phí rẻ hơn rất nhiều so với cộng hưởng từ.

*(chelate hay chélate là một cấu trúc hóa học dạng vòng có chứa một ion kim loại.)

chế cộng hưởng từ

Về mặt từ tính, các thuốc tương phản từ đều là các chất thuận từ mặc dù cũng có tài liệu phân loại chi tiết hơn thành các chất nhạy từ (superparamagnetic). Tuy nhiên do không có proton trong phân tử, các chất thuận từ không tạo ra tín hiệu cộng hưởng từ.

Dưới tác động của từ trường ngoài B0, các chất thuận từ bị từ hóa (nhiễm từ) và trở thành các từ trường tí hon. Với một nồng độ đủ cao, chất thuận từ làm cho từ trường cục bộ mạnh hơn. Từ trường cục bộ mạnh hơn này đã góp phần làm giảm thời gian hồi giãn dọc (T1) và thời gian hồi giãn ngang (T2) của mô.

Tuy nhiên, tùy thuộc vào từng loại thuốc tương phản từ cụ thể mà mức độ làm  giảm  T1  và  T2  của  chúng  khác  nhau.  Các  thuốc  làm  giảm  T1  nhiều thường được xem là chất tương phản “dương” vì chúng làm cho tín hiệu của mô tăng lên ở hình trọng T1. Ngược lại các thuốc làm giảm T2 nhiều được xem là chất tương phản “âm” vì chúng làm giảm tín hiệu của mô trên hình trọng T2.

Các khoang phân b

Để dễ hình dung quá trình tác động của chất tương phản từ sau khi được tiêm vào đường tĩnh mạch, chúng ta có thể xem như các dịch trong cơ thể được phân bố vào các khoang: nội mạch, gian bào, nội bào. Khoang nội mạch và gian bào có thể được gọi chung là khoang ngoại bào. Đối với khoang nội bào, trong nhiều trường hợp chúng ta cũng cần phân biệt giữa hệ lưới nội mô, hệ lympho và tế bào chủ mô của từng cơ quan vì một số thuốc tương phản từ có tính đặc hiệu đối với một số loại tế bào (xem bên dưới).

Tính đặc hiệu tế bào

Chế tạo các chất tương phản từ đặc hiệu với một loại tế bào nhất định rõ ràng là một ý tưởng rất thú vị, nhất là đối với các tế bào bất thường. Theo đây, chỉ cần sử dụng thuốc tương phản từ thích hợp, chúng ta có khả năng khẳng định được chẩn đoán, định vị nơi tổn thương với cả phạm vi, mức độ tổn thương.

Mặc dù đa số các thuốc tương phản từ hiện nay đều không có tính đặc hiệu tế bào mà chỉ hoạt động chủ yếu ở khoang ngoại bào (nội mạch và gian bào), người ta cũng đã chế tạo thành công một số thuốc khá đặc hiệu với tế bào gan hoặc hệ thực bào đơn nhân (mononuclear phagocytic system) như hệ lưới nội mô, các đại thực bào và hệ lympho. 

Tính chất dược động học

Về mặt dược động học, sau khi được tiêm vào mạch máu qua đường tĩnh mạch, các thuốc tương phản từ sẽ theo dòng máu trong tĩnh mạch về tim, qua phổi rồi trở lại tim để theo hệ thống động mạch tỏa đi khắp cơ thể. Ở các mô, qua hệ thống mao mạch, chất tương phản từ có thể khuếch tán vào khoảng gian bào. Ở đây có thể xảy ra ba tình huống:

  1. Nếu chất tương phản từ đặc hiệu với tế bào gan, nó có thể được bắt giữ rồi được thải vào đường mật, qua ruột và theo phân ra ngoài.
  2. Nếu chất tương phản từ đặc hiệu với hệ thực bào, nó sẽ bị bắt giữ và tiêu hủy tại đây (hệ lưới nội mô, hạch lympho, tủy xương).
  3. Tuy nhiên một lượng lớn thuốc cản từ vẫn ở nội mạch (hồ máu). Chúng nhanh chóng được lọc qua thận rồi đào thải ra ngoài. Cần chú ý rằng lượng chất tương phản từ ở khoang gian bào cũng sẽ dần dần khuếch tán ngược trở lại vào nội mạch rồi được đào thải ở thận.

Một điểm cần đặc biệt nhấn mạnh ở đây: mao mạch của hệ thần kinh và tinh hoàn không cho thuốc tương phản từ thấm qua. Nghĩa là khi không có tổn thương, hệ thần kinh và tinh hoàn không bắt thuốc tương phản từ. Đặc điểm này rất có ý nghĩa trong lĩnh vực chẩn đoán hình ảnh thần kinh: não và tủy sống chỉ bắt thuốc tương phản từ khi có tổn thương hàng rào máu-não.

2. THUỐC TƯƠNG PHẢN NGOẠI BÀO

Chúng ta đã biết rằng ngoại bào bao gồm nội mạch và gian bào. Các thuốc tương phản từ chỉ tồn tại ở khoang ngoại bào đều là các chelate gado, chẳng hạn gadopentetate dimeglumine (Magnevist), gadoteridol (Dotarem), vân vân. Sau khi được tiêm tĩnh mạch, chúng nhanh chóng lan tỏa vào toàn bộ khoang ngoại bào. Cuối cùng chúng sẽ được lọc qua thận và đào thải qua nước tiểu. Về mặt thời gian, chúng ta có thể chia quá trình lan tỏa này thành ba giai đoạn, gọi là ba thì: thì động mạch, thì hồ máu và thì ngoại bào.

Thì động mạch

Trong khoảng thời gian không quá 30 giây sau khi tiêm thuốc tương phản từ, chất tương phản tồn tại chủ yếu trong hệ thống động mạch. Vì thế, khoảng thời gian này được gọi là thì động mạch (arterial phase). Đây là khoảng thời gian cho phép đánh giá khả năng tưới máu của các mô.

Khi chụp thì động mạch, dấu hiệu chụp thành công là trên hình chỉ thấy động mạch tăng tín hiệu; rất ít hoặc không thấy tĩnh mạch. Nếu chụp vùng bụng, tụy, lách và vỏ thận đã bắt đầu có ngấm thuốc mặc dù có thể không đồng nhất; tủy thận và chủ mô gan hầu như chưa thấy có thuốc.

Về mặt chức năng, hình ảnh sớm của thì động mạch đánh giá các động mạch tốt nhất. Các hình ảnh muộn hơn biểu thị khả năng được tưới máu của các mô. Để có được các hình ảnh của thì động mạch, trong thực tế người ta sử dụng các chuỗi xung GRE có nhiễu phá (hai chiều hoặc ba chiều).

Thì hồ máu

Khoảng thời gian 30 giây tiếp theo sau thì động mạch được xem là thì hồ máu (blood pool phase), nghĩa là thì hồ máu thường không vượt quá một phút kể từ khi tiêm thuốc tương phản từ vào tĩnh mạch. Trong khoảng thời gian này, thuốc tương phản từ đã hòa trộn vào toàn bộ hệ thống mạch máu (động mạch, mao mạch, tĩnh mạch). Một phần thuốc cũng có thể đã bắt đầu đi vào các ống thận hoặc ngấm qua thành mao mạch để vào khoang gian bào.

Ở gan, thì hồ máu cũng được gọi là thì tĩnh mạch cửa (portal vein  phase), mặc dù chủ mô gan cũng bắt thuốc mạnh nhất ở thì này. Lý do là xấp xỉ hai phần ba lượng máu vào gan thông qua hệ thống tĩnh mạch cửa. Ngoài ra do có một lượng máu rất lớn trong các xoang gan nên trong thì này, các tổn thương kém tưới máu trong gan dễ dàng được phát hiện. Các tổn thương tăng tưới máu thường khó phát hiện hơn trong thì hồ máu do chúng có thể bắt thuốc gần bằng với chủ mô gan.

Thì ngoại bào

Mặc dù về lý thuyết, thì ngoại bào (extracellular phase) hay thì cân bằng (equilibrium phase) đã bắt đầu từ sau 1 phút kể từ khi tiêm thuốc vào tĩnh mạch thế nhưng trên thực tế, thời gian tốt nhất để chụp hình thì ngoại bào là sau 2 phút.

Đến thời điểm này, thuốc tương phản từ đã lan tỏa vào tất cả các khoang gian bào, ngoại trừ hệ thần kinh và tinh hoàn. Mức độ bắt thuốc trong thì ngoại bào thể hiện rất rõ ở các mô phù, vốn thường gặp trong các tổn thương u và viêm. Mô sợi cũng thường bắt thuốc mạnh trong thì ngoại bào do chúng có khoang gian bào lớn mặc dù khả năng tưới máu thường rất kém. Các tổn thương di căn thường cũng bắt thuốc rất mạnh vì cũng có khoang gian bào lớn.

Do toàn bộ chất tương phản đều được đào thải qua nước tiểu nên trong thì ngoại bào, chủ mô thận và đường niệu (đài bể thận, niệu quản, bàng quang) đều tăng tín hiệu.

Đối với não, đánh giá các tổn thương ở thì ngoại bào rất có giá trị. Ở khoảng thời gian này, lượng thuốc tương phản từ trong hồ máu đã giảm đáng kể. Mặt khác, do hàng rào máu-não của mô bình thường không cho thuốc tương phản thấm qua để vào khoảng gian bào nên các vùng tăng tín hiệu trong nhu mô não ở thì ngoại bào đều biểu thị cho tình trạng tổn thương hàng rào máu-não.

Về mặt kỹ thuật, chúng ta cần lưu ý hai điểm khi thực hiện chụp hình thì ngoại bào.

  1. Sự phân bố thuốc tương phản trong thì ngoại bào khá ổn định và kéo dài, do vậy các kỹ thuật chụp nhanh không còn quan trọng nữa.
  2. Xóa mỡ là một yêu cầu gần như bắt buộc vì mỡ có tín hiệu cao khiến chúng ta có thể không phân biệt được với mô bắt thuốc trong thì này. Tuy nhiên chúng ta lại không nên dùng chuỗi xung STIR để xóa mỡ. Do T1 của mô bắt thuốc bị ngắn lại dưới tác dụng của thuốc tương phản từ, việc sử dụng thời đảo TI ngắn trong chuỗi xung STIR có thể làm mất cả tín hiệu của mỡ lẫn của mô bắt thuốc.

4. THUỐC TƯƠNG PHẢN ĐẶC HIỆU TẾ BÀO GAN

Thuốc tương phản đặc hiệu tế bào gan có thể được chia thành hai nhóm: nhóm thứ nhất có chứa gado (Gd3+) và cũng là các chất chelate; nhóm thứ hai là một hợp chất của mangan (Mn2+).

Các chelate gado

Gắn thêm một cấu trúc thích hợp vào một loại chelate gado ngoại bào có thể khiến cho nó di chuyển qua được màng tế bào gan. Hai chất hiện được phép sử dụng trong lâm sàng là gadobenate dimeglumine (Gd-BOPTA) và gadoxetic acid disodium (Gd-EOB-DTPA).

Giống như các chelate gado hoạt động ngoại bào khác, các chelate đặc hiệu tế bào gan này cũng có tác dụng ngoại bào như đã thảo luận trong phần trước, vì vậy chúng cũng được lọc và thải qua thận. Tuy nhiên do khả năng được tế bào gan hấp thụ, chúng cũng được đào thải qua đường mật, vào ruột và theo phân ra ngoài.

Khoảng từ 5 đến 10 phút sau khi được tiêm vào tĩnh mạch, các thuốc tương phản từ sẽ phân bố qua đường mạch máu vào khoang ngoại bào và tế bào gan. Ở các phim muộn sau 30 phút, phần thuốc trong khoang ngoại bào hầu như đã được đào thải hết nên chủ yếu chúng chỉ còn trong tế bào gan, đường mật, ở phần đầu ruột non, và dĩ nhiên ở cả hệ thống góp của thận.

Hợp chất mangan

Chỉ có một hợp chất mangan được chấp thuận cho sử dụng trong lâm sàng là mangafodipir trisodium (Mn-DPDP). Thật ra chất tương phản này cũng có thể được bắt giữ bởi các mô có quá trình chuyển hóa ái khí như tụy, vỏ thận và một số mô khác nhưng hiện tại nó chỉ được dùng với mục đích chẩn đoán các tổn thương của gan.

4. THUỐC TƯƠNG PHẢN ĐẶC HIỆU HỆ THỰC BÀO

Khác với các chất tương phản từ đã thảo luận ở hai phần trước mà đa phần đều là các chelate gado, chất tương phản từ đặc hiệu hệ thực bào là các hạt nhỏ chứa một lõi oxyt sắt được bọc bên ngoài bằng một lớp vỏ dextran hoặc polysaccharide. Tên gọi chung cho các thuốc có kích thước hạt lớn là SPIO (superparamagnetic iron oxide) và cho các thuốc có kích thước hạt cực nhỏ là USPIO (ultrasmall superparamagnetic iron oxide). Nhìn chung các thuốc tương phản này đều bị bắt giữ và tiêu hủy bởi các tế bào hệ lưới nội mô có trong gan và lách, các đại thực bào, các hạch lympho và tủy xương. Hoạt tính sinh học của chúng phụ thuộc vào kích thước hạt và lớp vỏ polysaccharide bọc bên ngoài hạt.

Superparamagnetic Iron Oxide (SPIO)

Nhóm các chất tương phản SPIO, điển hình là ferumoxide (AMI-25), có kích thước từ khoảng 30 đến 1000 nm. Do có kích thước khá lớn nên sau khi được tiêm vào máu qua đường tĩnh mạch, chúng nhanh chóng bị thực bào và giảm nhanh nồng độ trong máu (bán hủy) trong khoảng thời gian không quá 60 phút. Khoảng 80% lượng thuốc bị bắt giữ bởi các tế bào Kuffer trong hệ lưới nội mô của gan; 20% còn lại bị bắt ở lách và tủy xương. Do vậy các thuốc SPIO rất hay được dùng để chẩn đoán các tổn thương của gan. Thời điểm được chọn để thực hiện chụp hình là 30 phút sau tiêm và có thể kéo dài đến 4 giờ.

Về tác dụng cộng hưởng từ, các thuốc SPIO có tác dụng làm giảm T2 mạnh hơn tác dụng làm giảm T1. Do vậy trên các hình trọng T2 hoặc T2*, mô gan bình thường giảm tín hiệu rõ rệt. Các hình trọng T1 dù hạn chế hơn nhưng vẫn có ích khi được chụp tại nhiều thời điểm cách nhau vài phút trong khoảng thời gian 10 phút sau tiêm để so sánh. Ở thời điểm vài phút sau tiêm, mô gan có tăng tín hiệu rồi giảm dần khi lượng thuốc trong máu giảm, bắt đầu khá rõ ở thời điểm 10 phút sau tiêm.

Do cũng có khả năng bị bắt giữ tại lách, hạch lympho và tủy xương nên thuốc SPIO cũng còn được sử dụng để chẩn đoán các tổn thương ở những nơi này tuy ít phổ biến trong lâm sàng.

Ultrasmall Superparamagnetic Iron Oxide (USPIO)

Mặc dù cùng nhóm với các thuốc SPIO, các thuốc USPIO có kích thước nhỏ hơn nhiều, thường dưới 10 nm. Nhờ kích thước siêu nhỏ này, chúng khó bị phát hiện hơn nên tốc độ bị bắt giữ bởi các tế bào hệ lưới nội mô tại gan và lách chậm hơn, nghĩa là chúng tồn tại trong máu lâu hơn (thời gian bán hủy dài hơn). Yếu tố này khiến cho các thuốc USPIO lan tỏa tốt hơn vào khoang gian bào. Cuối cùng tại các hạch lympho và tủy xương, chúng bị hệ thống thực bào tại đây bắt giữ và tiêu hủy.

Về đặc điểm cộng hưởng từ, các thuốc USPIO có tác dụng làm giảm T2 kém hơn so với các thuốc SPIO. Kết quả là tác dụng làm giảm T1 và T2 của các thuốc USPIO không còn khác biệt nhiều lắm. Nghĩa là chúng vừa làm tăng tín hiệu của mô đích trên hình trọng T1, vừa làm giảm tín hiệu của nó trên hình trọng T2.

Khả năng tồn tại khá lâu trong máu và tích tụ muộn tại hạch lympho và tủy xương của các thuốc USPIO đã được ứng dụng để chẩn đoán các tổn thương di căn hạch và tủy xương mặc dù cho đến hiện nay chúng vẫn chưa được phổ biến rộng rãi.

5. NHỮNG ĐIỂM CẦN GHI NHỚ

    • Hình ảnh CT sau tiêm thuốc cản quang và hình ảnh cộng hưởng từ sau tiêm thuốc tương phản từ trông có vẻ giống nhau và có thể làm cho chúng ta ngộ nhận rằng thuốc tương phản từ cũng có khả năng “cản từ”, tương tự như khả năng “cản quang” của thuốc cản quang.
    • Các thuốc tương phản từ được phép sử dụng đa số thuộc nhóm chelate ga Mangan chỉ có một hợp chất là Mn-DPDP. Sắt được dùng dưới dạng các oxyt sắt nhưng được bọc bằng một lớp vỏ dextran hoặc polysaccharide.
    • Các thuốc tương phản từ thường được dùng bằng đường tiêm tĩnh mạch và theo hệ thống mạch máu lan tỏa khắp cơ thể. Trong khoảng 30 giây đầu tiên sau tiêm, thuốc chủ yếu tồn tại trong các động mạch (thì động mạch). Trong khoảng 30 giây tiếp theo, thuốc đã lan tỏa khắp hệ thống mạch máu (thì hồ máu, thì tĩnh mạch cửa). Từ thời điểm 1 phút trở về sau, thuốc bắt đầu ngấm qua hệ thống mao mạch để vào khoang gian bào mặc dù vẫn tồn tại trong hệ thống mạch máu (thì ngoại bào). Mao mạch của hệ thần kinh và tinh hoàn không cho thuốc thấm qua trừ khi chúng bị tổn thương.
    • Về tính đặc hiệu tế bào, hầu hết các thuốc đều có tác dụng ngoại bào và không có tính đặc hiệu đối với bất kỳ loại tế bào nào. Khi được gắn thêm một cấu trúc thích hợp, một số hợp chất chelate gado (Gd- BOPTA, Gd-EOB-DTPA) có thể bị tế bào gan bắt giữ và đào thải theo đường mật  vào  ống  tiêu  hó  Hợp  chất  Mn-DPDP  cũng  có  tác  dụng tương tự đối với tế bào gan. Riêng oxyt sắt dưới dạng các hạt SPIO và USPIO dễ bị hệ thực bào bắt giữ, đặc biệt là tế bào Kuffer của gan, nên cũng được xem như “đặc hiệu” đối với những loại tế bào có khả năng thực bào.
    • Các thuốc tương phản từ nói chung đều có tác dụng làm giảm cả T1 lẫn T2 của mô có “bắt thuốc” tuy mức độ có khác nha Cụ thể, các thuốc chelate gado có tác dụng làm giảm T1 mạnh hơn, cho ra hình ảnh tăng tín hiệu ở các mô có “bắt thuốc” trên các hình trọng T1. Ngược lại các thuốc SPIO lại có tác dụng làm giảm T2 mạnh hơn, cho ra hình ảnh giảm tín hiệu ở các mô có “bắt thuốc” trên các hình trọng T2.

Nguồn: Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 7, NXB ĐHQG TPHCM, Trang 105-112.

 

 

PHẦN 5: CHUỖI XUNG CĂN BẢN VÀ KỸ THUẬT BỔ TRỢ CỘNG HƯỞNG TỪ

Sau khi đã tìm hiểu xong các nguyên lý cơ sở của kỹ thuật chụp ảnh cộng hưởng từ qua bốn phần đầu tiên, phần này sẽ vận dụng các nguyên lý đó để lý giải khả năng khảo sát của các chuỗi xung cơ bản cùng với một số kỹ thuật bổ trợ có hiệu quả đặc biệt hiện đang được sử dụng phổ biến trong nhiều hệ thống chụp ảnh cộng hưởng từ. Nội dung sẽ được bàn luận trong phần này bao gồm:

  • Chuỗi xung và bộ xung
  • Chuỗi xung điểm vang spin
  • Chuỗi xung điểm vang thang từ
  • Kỹ thuật khôi phục đảo nghịch
  • Kỹ thuật bão hòa
  • Kỹ thuật khử mỡ

1. CHUỖI XUNG VÀ BỘ XUNG

Qua những phần thảo luận đã nêu ở những phần trước, chúng ta biết rằng để thu được một ảnh cộng hưởng từ, người ta phải phát xung kích thích nhiều lần với thời kích TR được chọn lựa phù hợp, một góc lật a phù hợp, một thời vang TE phù hợp, và rất có thể một xung tái lập 180o. Tất cả những tham số này sẽ được phối hợp với các thang từ mã hóa vị trí không gian để tạo ra được một ảnh cộng hưởng từ có tính chất mong muốn. Loạt các xung, góc lật và các thang từ như thế được gọi chung là một chuỗi xung (pulse sequence).

Ký pháp mô tả chuỗi xung

Để thuận tiện cho việc mô tả và phân tích tính chất của các chuỗi xung, chúng ta sẽ đưa ra một ký pháp mô tả diễn biến theo thời gian của các xung và thang từ trong một chuỗi xung. Ký pháp này được sử dụng rộng rãi trong các tài liệu cộng hưởng từ với một ít khác biệt nhỏ. Hình 1 trình bày các ký hiệu được sử dụng trong ký pháp chuỗi xung của cuốn sách này.


Hình 1:
Ký pháp biểu diễn các xung và thang từ. Trục ngang biểu diễn cho thời gian theo hướng từ trái sang phải. (a) Ký hiệu cho sóng radio (RF), bao gồm xung kích thích (thường tạo một góc lật 90o), xung tái lập 180o và tín hiệu cộng hưởng từ. (b) Ký hiệu cho thang từ chọn lớp Gs và thang mã tần số Gf, thường gồm một giai đoạn khử pha (thùy khử pha) và một giai đoạn hồi pha (thùy hồi pha). (c) Ký hiệu cho thang mã pha, biểu diễn cho nhiều lần lập lại thang từ này với các cường độ khác nhau.

Hình 1a trình bày các ký hiệu biểu diễn cho các xung RF (sóng radio, radiofrequency). Bên trái của Hình 1a là xung kích thích, nghĩa là sóng radio được phát ra để lật vectơ từ hóa dọc thành vectơ từ hóa ngang, với góc lật a được ghi ngay bên cạnh ký hiệu sóng mà ở trong Hình 1a là 90o. Ký hiệu ở giữa là xung tái lập 180o đã được giải thích và sẽ được sử dụng để tạo ra các xung điểm vang spin SE (xem Phần 2). Cuối cùng nằm bên phải là ký hiệu biểu thị cho tín hiệu cộng hưởng mà như chúng ta đã biết trong các phần 1 và 2, bản chất của nó cũng là sóng radio nhưng ở đây được vẽ khác đi để khỏi phải nhắc lại mỗi khi muốn ám chỉ các tín hiệu.

Hình 1b là những ký hiệu biểu diễn cho thang chọn lớp Gs và thang mã tần số Gf. Ký hiệu thùy khử pha (dephasing lobe) biểu thị cho khoảng thời gian áp dụng thang từ (Gs hoặc Gf) còn thùy hồi pha (rephasing lobe) biểu thị cho khoảng thời gian áp dụng thang từ theo hướng ngược lại so với thùy khử pha. Chẳng hạn nếu ở thùy khử pha, thang từ được áp dụng tăng dần từ trái sang phải thì ở thùy hồi pha, thang từ được áp dụng giảm dần từ trái sang phải. Đối với thang từ Gs, thùy khử pha được vẽ cao hơn đường thẳng ngang và thùy hồi pha được vẽ thấp hơn, giống như trong Hình 1b. Ngược lại đối với thang từ Gf, thùy khử pha được vẽ thấp hơn đường ngang và thùy hồi pha được vẽ cao hơn. Chúng ta sẽ phân tích chi tiết hơn ý nghĩa của các thùy này trong khi trình bày từng chuỗi xung cụ thể.

Trong Hình 1c, chúng ta thấy ký hiệu cho thang mã pha có một hình thái đặc biệt với nhiều thùy chồng xếp lên nhau, biểu thị cho sự thay đổi cường độ của thang mã pha một cách tuyến tính từ cường độ thật âm, dần đến zero rồi tăng dần thật dương ứng với mỗi lần áp dụng thang từ trong lần phát xung kích thích.

Bộ xung

Để có thể đánh giá được những khác biệt về cấu trúc của các vùng cơ thể cũng như xác định được tổn thương cùng những đặc tính của nó, người ta thường phải dùng nhiều chuỗi xung khác nhau ở nhiều hướng cắt khác nhau (cắt ngang trục, cắt dọc đứng, cắt dọc ngang). Trong thực tế, đối với mỗi vùng cơ thể người ta thường chuẩn bị sẵn một loạt các chuỗi xung cần chụp theo các mặt cắt nhất định. Mỗi nhóm chuỗi xung theo các mặt cắt được thiết đặt sẵn như thế được gọi là bộ xung (protocol).

Ngoài các bộ xung riêng biệt cho mỗi vùng cơ thể, người ta còn có thể xây dựng các bộ xung để phát hiện một số tổn thương. Những bộ xung này được sử dụng khi có gợi ý chẩn đoán của lâm sàng hoặc khi thấy có tín hiệu bất thường trên các hình thu được bằng các bộ xung thường quy. Chẳng hạn khi chụp não, bộ xung thường quy có thể chỉ gồm các chuỗi xung điểm vang spin để có được các hình trọng T1, trọng T2, FLAIR. Khi nghi ngờ có tổn thương xuất huyết, người ta sử dụng thêm chuỗi xung điểm vang thang từ GRE để phát hiện và khẳng định chẩn đoán.

Bây giờ chúng ta đã sẵn sàng bàn luận về các loại chuỗi xung căn bản hay được dùng khi chụp cộng hưởng từ. Trong một chừng mực nhất định chúng ta cũng có thể bàn thêm một số ứng dụng thực tế của những chuỗi xung này.

2. CHUỖI XUNG ĐIỂM VANG SPIN

Chuỗi xung điểm vang spin hay chuỗi xung spin echo (SE) là loại chuỗi xung đơn giản và được sử dụng rộng rãi nhất. Như tên gọi của nó đã cho thấy, tín hiệu đo được từ chuỗi xung này là các điểm vang spin (spin echo). Trong nhiều bộ xung, các ảnh thường quy trọng T1 (T1W), trọng T2 (T2W) và trọng mật độ proton (PDW) đều sử dụng kỹ thuật điểm vang spin SE. Nhìn chung các chuỗi xung điểm vang spin SE thường có thời kích TR khá dài, do vậy thời gian chụp thường kéo dài hơn so với các loại chuỗi xung khác.

Xung tái lập 180o

Đặc điểm quan trọng nhất của các chuỗi xung điểm vang spin SE là việc sử dụng một xung tái lập 180o (180o refocusing pulse) ngay giữa thời vang TE, nghĩa là tại thời điểm TE/2, tái lập một tín hiệu cộng hưởng từ có cường độ khá mạnh tại thời điểm đo tín hiệu TE. Tín hiệu này được gọi là điểm vang spin (spin echo). (Để ý rằng thuật ngữ proton và spin thường được sử dụng lẫn lộn và được xem như đồng nghĩa)

Như chúng ta đã biết, sau khi tắt xung kích thích, tín hiệu cộng hưởng từ lúc này có cường độ mạnh nhất. Theo thời gian, tín hiệu này suy giảm dần, một hiện tượng mà chúng ta gọi là hiện tượng suy giảm cảm ứng tự do FID (free induction decay). Theo lý thuyết, tín hiệu cộng hưởng từ chỉ mất hẳn khi vectơ từ hóa ngang mất hẳn (thời gian hồi giãn T2). Trong thực tế, hiện tượng này xảy ra nhanh hơn (thời gian T2*). Nguyên nhân chủ yếu là do tính không đồng nhất của từ trường cục bộ tại các mô và độ xê dịch hóa học của các proton nằm trong các chất khác nhau. Từ trường cục bộ không đồng nhất cùng với độ xê dịch hóa học khác nhau làm cho các proton lúc đầu cùng tần số và cùng pha (Hình 2a) bây giờ lại quay nhanh chậm khác nhau: một số proton vượt lên trước còn một số chậm lại phía sau (Hình 2b). Lúc này do các proton quay với các pha khác nhau, tín hiệu cộng hưởng từ bị suy giảm.

Nếu tại thời điểm TE/2, chúng ta phát ra một xung 180o. Xung này sẽ lật trục quay của các proton một góc 180o (Hình 2c), khiến cho các proton đang quay chậm hơn được đặt ở vị trí phía trước các proton quay nhanh. Kết quả là khi quay hết một khoảng thời gian TE/2 nữa (tại điểm vang TE), các proton bây giờ lại cùng pha như trong Hình 2d, tái lập lại một tín hiệu đủ mạnh (điểm vang) để chúng ta đo đạc và tạo ảnh.

Với cơ chế hoạt động như thế, xung tái lập đã điều chỉnh lại được các nguyên nhân cục bộ làm suy giảm tín hiệu. Những nguyên nhân cục bộ thường gặp bao gồm tính không đồng nhất của từ trường cục bộ (do sự hiện diện của rất nhiều loại chất khác nhau trong mô với khả năng từ hóa khác nhau, đặc biệt là các chất thuận từ) và độ xê dịch hóa học, nhất là độ xê dịch hóa học giữa nước và mỡ.


Hìn
h 2: Kỹ thuật dùng xung tái lập để thu được một điểm vang cần thiết tại thời điểm đo tín hiệu TE. Trong (a), các proton đang cùng pha tại thời điểm ngay sau khi tắt xung kích thích. Theo thời gian, các proton lệch pha nhau, dẫn đến tình huống của (b) tại thời điểm TE/2. Trong (c), sau khi phát xung tái lập 180o, các proton bị lật qua phía bên đối diện của vạch xuất phát, khiến cho các proton chậm lại đang chạy phía trước các proton quay nhanh. Cuối cùng vào thời điểm TE như trong (d), các proton lại cùng pha, tạo ra một điểm vang của tín hiệu.

Diễn tiến thời gian của chuỗi xung điểm vang spin SE

Bây giờ sau khi đã hiểu được ý tưởng then chốt của chuỗi xung điểm vang spin, chúng ta sẽ giải thích diễn tiến thời gian của chuỗi xung này. Chuỗi xung điểm vang spin được khởi đầu bằng một xung kích thích với góc lật 90o, và dưới tác dụng của thang chọn lớp Gs, xung kích thích chỉ cộng hưởng với các proton nằm trong lớp cắt cần khảo sát. Tiếp theo chúng ta áp dụng thang mã pha Gp để mã hóa thông tin vị trí của các proton bằng cách thay đổi pha của chúng một cách có hệ thống. Tại thời điểm TE/2, một xung tái lập 180o được phát ra. Xung này, như đã thảo luận ở trên, sẽ lật trục quay của các proton 180o, nhờ vậy tại thời điểm TE, các proton lại quay cùng pha, tạo ra một điểm vang spin (spin echo, SE) mà chúng ta có thể thu nhận để tạo ra hình cộng hưởng từ. Hình 3 là một sơ đồ trình bày diễn tiến thời gian của các chuỗi xung điểm vang spin SE.

Một điểm cần giải thích rõ hơn ở đây là ảnh hưởng của thang chọn lớp Gs và thang mã tần số Gf. Cả hai thang từ này đều làm thay đổi tần số quay của các proton, vì vậy làm cho chúng lệch pha nhau, nghĩa là khử pha của các proton (nên có tên là thùy khử pha). Hậu quả của tình trạng lệch pha của các proton là tín hiệu bị suy giảm. Để điều chỉnh tình trạng lệch pha do nguyên nhân thang từ, chúng ta áp dụng một thùy hồi pha ngay sau thùy khử pha bằng cách đảo ngược chiều của thang từ, nghĩa là nếu ở thùy khử pha, thang từ tăng dần cường độ từ đầu này đến đầu kia thì trong thùy hồi pha, thang từ đảo hướng tác dụng, tăng dần cường độ theo chiều ngược lại. Cường độ và thời gian áp dụng thùy hồi pha được tính toán để có thể bù trừ được tình trạng lệch pha do thùy khử pha gây ra.


Hìn
h 3: Diễn tiến thời gian của các xung và thang từ được sử dụng để tạo ra chuỗi xung điểm vang spin. Điểm quan trọng nhất của những chuỗi xung loại này là chúng luôn có một xung tái lập 180o được phát ra tại thời điểm TE/2, cho phép tái lập một tín hiệu đủ mạnh tại thời điểm đo tín hiệu TE và được gọi là điểm vang spin.

Tuy nhiên trong chuỗi xung điểm vang spin, đối với thang từ mã hóa tần số Gf chúng ta không cần áp dụng thùy hồi pha theo chiều ngược lại với thùy khử pha vì tác dụng của thùy khử pha đã được xung tái lập điều chỉnh. Trong các chuỗi xung điểm vang thang từ (GRE) được thảo luận trong Phần 3 chúng ta phải dùng một thùy hồi pha theo chiều ngược lại để điều chỉnh tác dụng của thùy khử pha.

3. CHUỖI XUNG ĐIỂM VANG THANG TỪ

Như chúng ta đã biết từ Phần 2, chuỗi xung điểm vang spin SE bao gồm một xung kích thích 90o, theo sau là một xung tái lập 180o tại thời điểm TE/2 để điều chỉnh lại tình trạng lệch pha của các proton do ảnh hưởng của độ xê dịch hóa học và tính chất không đồng nhất của từ trường cục bộ vốn tồn tại trong mọi mô. Khuyết điểm của kỹ thuật này là thời kích TR dài làm tốn thời gian thu nhận tín hiệu và thời gian chụp ảnh.

Để có thể rút ngắn thời kích TR, người ta đưa ra một kỹ thuật chụp có tên là chuỗi xung điểm vang thang từ GRE (gradient echo). Chuỗi xung GRE này có hai đặc điểm quan trọng giúp chúng ta phân biệt nó với chuỗi xung điểm vang spin SE.

  1. Thứ nhất, chuỗi xung điểm vang thang từ GRE không dùng xung tái lập 180o. Thay vì thế, GRE chỉ sử dụng thêm một thùy hồi pha của thang mã tần số để điều chỉnh tình trạng lệch pha do tác dụng của thùy khử pha gây ra.

  2. Thứ hai, xung kích thích dùng một góc lật a < 90o thay vì một góc lật 90o như của xung kích thích trong chuỗi xung điểm vang spin.

Hình 4 trình bày sơ đồ diễn tiến thời gian của chuỗi xung điểm vang thang từ GRE. Tác dụng của chuỗi xung GRE được bàn luận ngay bên dưới.


Hình
4: Diễn tiến thời gian của các xung và thang từ trong chuỗi xung điểm vang thang từ GRE. Hai đặc điểm quan trọng của chuỗi xung GRE là xung kích thích có góc lật a < 90o và thay xung tái lập bằng thùy hồi pha của thang mã tần số Gf, tạo ra một điểm vang thang từ.

Như đã được giải thích trong Phần 2 rằng các thang từ đều làm cho các proton quay lệch pha nhau, dẫn đến tình trạng suy giảm tín hiệu. Ở đặc điểm thứ nhất, vì chuỗi xung điểm vang thang từ GRE không dùng xung tái lập 180o, người ta phải dùng một thùy hồi pha riêng cho thang mã tần số Gf để làm cho các proton quay cùng pha trở lại với nhau. Vì vậy dưới tác dụng của thùy hồi pha này, một điểm vang được hình thành và được gọi là điểm vang thang từ (gradient echo).

Mặc dù điều chỉnh được tình trạng lệch pha do tác dụng của thùy khử pha trong thang mã tần số, thùy hồi pha này không điều chỉnh được tình trạng lệch pha do tính không đồng nhất của từ trường cục bộ và độ xê dịch hóa học gây ra. Do vậy, hình thu được bằng chuỗi xung điểm vang thang từ về cơ bản là hình ảnh trọng T2* (T2*W), đặc biệt khi dùng thời vang TE đủ dài.

Trong thực tế, đặc thù trọng T2* này của chuỗi xung điểm vang thang từ GRE có thể được tận dụng để phát hiện một số loại tổn thương. Cụ thể, các tổn thương vôi hóa (chứa canxi) hoặc xuất huyết (chứa sắt) là những tổn thương có chứa các chất nhạy từ. Dưới tác dụng của từ trường ngoài, chúng trở nên nhiễm từ và làm cho các mô chứa chúng trở thành một từ trường rất không đồng nhất. Khi đó nếu dùng thời vang TE đủ dài, trên hình ảnh trọng T2* khi dùng chuỗi xung GRE, vùng mô đó sẽ hầu như mất tín hiệu.

Với đặc điểm thứ hai của chuỗi xung GRE, nghĩa là dùng một xung kích thích có góc lật nhỏ hơn 90o, chuỗi xung GRE cho phép dùng một thời kích TR ngắn hơn nhiều so với thời kích TR được dùng trong chuỗi xung SE. Như chúng ta đã biết từ Phần 3, sử dụng một xung kích thích có góc lật 90o sẽ lật hoàn toàn độ từ hóa dọc thành độ từ hóa ngang. Thế nhưng nếu dùng một góc lật nhỏ hơn, chúng ta vẫn có thể có được một độ từ hóa ngang đủ lớn để cho ra một tín hiệu có ích, đồng thời do độ từ hóa dọc chỉ bị lật một phần thành độ từ hóa ngang, thời gian cần để khôi phục lại độ từ hóa dọc sẽ ngắn hơn, cho phép sử dụng một thời kích TR ngắn hơn (Hình 5).

Trong một số trường hợp, thời kích TR được dùng trong chuỗi xung GRE có thể xấp xỉ bằng hoặc ngắn hơn thời gian T2 của một số mô đang được khảo sát. Hệ quả là tại thời điểm phát xung kích thích tiếp theo, độ từ hóa ngang của các mô có thời gian T2 dài hơn thời kích TR vẫn còn lại một ít. Thế rồi mỗi xung kích thích tiếp theo lại tiếp tục lật độ từ hóa ngang ngày càng xa hơn, cho đến khi độ từ hóa ngang được lật đứng lên trùng với độ từ hóa dọc, làm cho độ từ hóa dọc lúc này “lớn hơn chính nó”. Đến lúc này, độ từ hóa được xem như đã đạt trạng thái ổn định (steady state). Khi đó nó được gọi là độ từ hóa dọc ổn định (steady state longitudinal magnetization), được cấu thành bởi độ từ hóa dọc khôi phục được và độ từ hóa ngang còn dư.


Hìn
h 5: Ảnh hưởng của góc lật đối với độ từ hóa dọc và độ từ hóa ngang. (a) Với góc lật lớn gần bằng 90o, độ từ hóa dọc lật hầu như hoàn toàn thành độ từ hóa ngang, chỉ còn lại một ít chưa lật hết. (b) Với góc lật nhỏ hơn nhiều so với 90o, độ từ hóa dọc chỉ lật một ít thành độ từ hóa ngang và hầu như còn nguyên.

Chuỗi xung có nhiễu phá

Đối với độ từ hóa ngang còn dư xảy ra khi dùng TR ngắn trong các chuỗi xung điểm vang thang từ, chúng ta có thể nhiễu phá nó trước khi phát xung kích thích tiếp theo. Bằng cách này, độ từ hóa dọc tại thời điểm phát xung tiếp theo chỉ thuần túy là độ từ hóa dọc đã khôi phục lại được. Loại chuỗi xung này được gọi là chuỗi xung điểm vang thang từ có nhiễu phá (spoiled gradient echo sequence)

Để thực hiện nhiễu phá độ từ hóa ngang còn dư, người ta có thể sử dụng các xung hoặc các thang từ thích hợp. Nếu nhiễu phá bằng thang từ, thang từ nhiễu phá (spoiler gradient) này được áp dụng ngay trước thời điểm phát xung tiếp theo, bảo đảm không còn độ từ hóa ngang khi xung kích thích được phát ra (Hình 6).

Độ tương phản của các hình thu được bằng chuỗi xung này phụ thuộc vào các tham số thời kích TR, góc lật a và thời vang TE. Cụ thể, khi sử dụng thời vang TE dài, hình thu được bằng chuỗi xung này được xem là hình trọng T2* nhờ đặc tính nhạy cảm đối với tình trạng từ trường cục bộ không đồng nhất như đã phân tích ở trên. Nếu góc lật a khá lớn, hình thu được về cơ bản là hình trọng T1. Nếu muốn giảm góc lật, thời gian TR cũng phải giảm theo.

Trong thực tế, loại chuỗi xung có nhiễu phá này thường được dùng với các tên thương mại là FLASH (Fast Low Angle SHot) hoặc SPGR (SPoiled GRASS).


Hình 6:
Một thang từ nhiễu phá được áp dụng ngay trước khi phát xung kích thích tiếp theo để nhiễu phá độ từ hóa ngang còn dư. Nhờ vậy vào lúc phát xung kích thích, độ từ hóa ngang không còn, chỉ còn độ từ hóa dọc đã khôi phục lại được.

Chuỗi xung không nhiễu phá

Khi độ từ hóa ngang còn dư không bị nhiễu phá, nó có thể bị lật dần sau mỗi xung kích thích. Đến một lúc nào đó, độ từ hóa ngang sẽ bị lật hoàn toàn 360o và có chiều trùng với chiều của từ trường ngoài. Kết quả là độ từ hóa ngang còn dư cộng lực với độ từ hóa dọc đã khôi phục được, tạo ra một độ từ hóa dọc thực tế lớn hơn độ từ hóa dọc đã khôi phục, đạt đến một trạng thái gọi là trạng thái ổn định.

Để mau chóng đạt được trạng thái ổn định, người ta sử dụng thêm một thang từ có tác dụng trái ngược với thang mã pha và gọi là thang từ tái cuộn (rewinding gradient). Thật ra, thang từ tái cuộn chỉ là thùy hồi pha của thang mã pha nhưng được áp dụng ngay trước khi phát xung kích thích lần tiếp theo. Nghĩa là cứ ứng với mỗi cường độ của thang mã pha, chúng ta sẽ áp dụng một thang từ có cùng cường độ nhưng ngược chiều ngay trước khi phát xung kích thích (Hình 7).


Hìn
h 7: Thang từ tái cuộn được sử dụng trong các chuỗi xung không nhiễu phá thật ra là thùy hồi pha của thang mã pha. Hai mũi tên trái ngược nhau nằm giữa ký hiệu thang mã pha để chỉ chiều áp dụng ngược chiều nhau.

Về mặt độ tương phản, các hình thu được bằng các chuỗi xung không nhiễu phá là các hình trọng T2/T1. Nghĩa là, các mô có T1 ngắn hoặc T2 dài đều cho tín hiệu cao. Biểu hiện trọng T1 trên hình có nguồn gốc từ độ từ hóa dọc đã khôi phục lại được khi phát xung kích thích, trong khi đó biểu hiện trọng T2 lại do công lao của độ từ hóa ngang còn dư. Mức độ trọng T2/T1 vì vậy tùy thuộc vào các tham số TR và góc lật. Trong thực tế, chuỗi xung điểm vang thang từ không nhiễu phá có tên thương mại là FISP (Fast Imaging with Steady state Precession) hoặc GRASS (Gradient Recalled Acquisition in the Steady State).

Trong số các chuỗi xung không nhiễu phá, có một loại chuỗi xung rất nhanh có tên chung là SSFP (Steady State Free Precession) với các tên thương mại quen thuộc là trueFISP (hãng Siemens) hoặc FIESTA (hãng GE). Loại chuỗi xung này có góc lật khá lớn, khoảng 60o hoặc lớn hơn và thời gian TR rất ngắn (3 ms hoặc ngắn hơn). Thời gian TR ngắn như thế làm cho chuỗi xung này có thể ghi nhận các “khoảnh khắc”, nhờ vậy nó có thể được dùng trong các kỹ thuật chụp hình tim và các mạch máu lớn.

4. KỸ THUẬT KHÔI PHỤC ĐẢO NGHỊCH

Về cơ bản, kỹ thuật khôi phục đảo nghịch IR (inversion recovery) chỉ là một dạng mở rộng của chuỗi xung điểm vang spin SE. Nghĩa là một chuỗi xung khôi phục đảo nghịch IR cũng gồm có một xung kích thích 90o, tiếp theo tại thời điểm TE/2 là một xung tái lập 180o. Tuy nhiên trong khi thực hiện chuỗi xung khôi phục đảo nghịch IR, tại một thời điểm nhất định trước khi phát xung kích thích 90o, người ta phát một xung đảo 180o. Khoảng thời gian từ lúc phát xung đảo 180o đến lúc phát xung kích thích 90o được gọi là thời gian đảo nghịch hay thời đảo TI (inversion time). Hình 8 minh họa diễn tiến thời gian của các xung trong chuỗi xung khôi phục đảo nghịch.


Hìn
h 8: Diễn tiến thời gian trong chuỗi xung khôi phục đảo nghịch IR. Các trục của các thang từ Gs, Gf và Gp đã được lược bỏ để cho đơn giản. Thời đảo TI được tính là thời gian giữa xung đảo và xung kích thích. Chú ý rằng xung đảo 180o và xung tái lập 180o có bản chất hoàn toàn giống nhau. Tác dụng của chúng khác nhau vì chúng được phát ra tại những thời điểm khác nhau khi trạng thái cộng hưởng từ của các proton khác nhau. 

Câu hỏi đặt ra ở đây là: xung đảo 180o này có ảnh hưởng như thế nào đối với các tín hiệu cộng hưởng từ của các mô khi chuỗi xung điểm vang spin SE được phát ra sau đó?

Trước tiên hãy trở về tình huống trước khi phát xung kích thích 90o. Lúc này, độ từ hóa dọc M0 đang hướng thuận chiều với từ trường ngoài B0. Dưới tác dụng của xung đảo 180o, độ từ hóa dọc bị đảo ngược 180o và hướng theo chiều ngược lại (chiều âm). Sau khi tắt xung đảo, độ từ hóa dọc đảo ngược dần dần khôi phục trở lại độ từ hóa dọc ban đầu (theo chiều dương): trước tiên thu giảm độ lớn theo chiều âm, qua zero rồi lớn dần theo chiều dương.

Thời gian khôi phục độ từ hóa dọc phụ thuộc thời gian T1 của mô: phải mất một thời gian T1 để độ từ hóa dọc đang hướng theo chiều âm trở về zero, tiếp theo là một thời gian T1 nữa để độ từ hóa dọc này lấy lại độ lớn ban đầu theo chiều dương. Như vậy thời gian khôi phục lại độ từ hóa dọc của các mô có T1 dài ngắn khác nhau sẽ khác nhau; nghĩa là mô có T1 ngắn sẽ khôi phục nhanh hơn mô có T1 dài. Khi đó tại một thời điểm sau khi tắt xung đảo 180o sao cho các mô chưa khôi phục hoàn toàn độ từ hóa dọc ban đầu, độ từ hóa dọc của một số mô vẫn còn âm (do có T1 dài), một số mô trở thành zero (do có T1 trung bình) và một số mô khác đã dương (do có T1 ngắn). Hình 9 minh họa quá trình khôi phục độ từ hóa dọc của hai mô A và B tại các thời điểm khác nhau x1, x2, x3, x4 và x5.


Hìn
h 9: Diễn tiến khôi phục các độ từ hóa dọc (vectơ xanh và đỏ) tương ứng với hai mô: mô A (T1 ngắn) và B (T1 dài) qua nhiều thời điểm sau khi tắt xung đảo 180o. (x1) Cả hai độ từ hóa đều âm. (x2) Độ từ hóa dọc của mô A (vectơ xanh) gần như bằng zero. (x3) Độ từ hóa của mô A đã dương nhưng mô B còn âm. (x4) Mô B lúc này gần như bằng zero còn mô A đã dương khá nhiều. (x5) Mô B bắt đầu dương, mô A gần như đã khôi phục hoàn toàn.

Bây giờ nếu phát một xung kích thích 90o, tác dụng của xung kích thích này phụ thuộc vào tình trạng khôi phục độ từ hóa dọc của mỗi mô. Cụ thể, các mô có độ từ hóa dọc còn độ lớn (dương hoặc âm) sẽ bị lật thành độ từ hóa ngang và cho ra tín hiệu cộng hưởng từ, trong khi đó các mô có độ từ hóa dọc bằng zero cũng sẽ có độ từ hóa ngang bằng zero và vì thế không có tín hiệu cộng hưởng từ.

  1. Đối với mô A có thời gian T1 ngắn, tình trạng mất tín hiệu xảy ra tại thời điểm x2 khi dùng thời đảo TI ngắn.

  2. Đối với mô B có thời gian T1 dài, tình trạng mất tín hiệu xảy ra tại thời điểm x4 (dùng thời đảo TI dài).

Khả năng xóa mất tín hiệu của một mô là một đặc điểm quan trọng nhất của kỹ thuật khôi phục đảo nghịch. Khi đó, tổn thương bị che khuất bên dưới có thể được bộc lộ ra rõ ràng hơn. Để xóa được tín hiệu của một mô, thời đảo TI cần chọn cho phù hợp với thời gian T1 của mô muốn xóa. Tính toán cụ thể cho thấy giá trị TI thường xấp xỉ khoảng 0,7 giá trị của T1.

Trong thực tế người ta thường dùng hai loại chuỗi xung khôi phục đảo nghịch IR: chuỗi STIR (short tau TI inversion recovery) để làm mất tín hiệu của mỡ (xóa mỡ) và chuỗi FLAIR (fluid attenuated inversion recovery) để làm mất tín hiệu của các dịch (thường là dịch não tủy).

Chuỗi STIR

Mục đích của chuỗi xung STIR là làm mất tín hiệu của mô mỡ, do vậy thời đảo TI được chọn khá ngắn, gần với thời gian T1 của mô mỡ. Cụ thể hơn, ở từ trường 1 Tesla, giá trị của TI khoảng 135-150 ms; ở từ trường 1,5 Tesla, giá trị của TI khoảng 155-175 ms. Với thời đảo TI ngắn như vậy, độ từ hóa dọc của các mô có thời gian T1 dài vẫn còn rất âm, trong khi đó độ từ hóa dọc của các mô có thời gian T1 ngắn chỉ còn âm ít hoặc có thể dương ít. Kết quả là khi phát xung kích thích, các mô có T1 dài sẽ cho ra tín hiệu mạnh hơn các mô có T1 ngắn.

Trong thực tế, chuỗi STIR thường có TR dài và TE ngắn. Với các tham số như vậy, hình thu được bằng chuỗi xung STIR là một hình đảo ngược (âm bản) của hình trọng T1 (T1W).

Chuỗi xung FLAIR

Mục đích của chuỗi xung FLAIR là xóa tín hiệu của các dịch đơn giản như dịch não tủy. Để làm được điều này, thời đảo TI được chọn thật dài (trên 2000 ms), phù hợp với thời gian T1 dài của các dịch.

Điển hình, chuỗi xung FLAIR có TR thật dài và TE dài. Kết quả là ảnh thu được từ chuỗi xung này thuộc loại ảnh trọng T2 (T2W) nhưng các thành phần thuần nước và dịch không có tín hiệu.

5. KỸ THUẬT BÃO HÒA

Theo một nghĩa nào đó, kỹ thuật bão hòa có thể được xem như cùng nhóm với kỹ thuật khôi phục đảo nghịch. Nghĩa là, cả hai đều dùng một xung chuẩn bị trước khi phát xung kích thích. Trong trường hợp khôi phục đảo nghịch, xung chuẩn bị là một xung 180o, làm lật ngược độ từ hóa dọc từ dương thành âm.

Trong trường hợp bão hòa, xung chuẩn bị cần lật hoàn toàn độ từ hóa dọc thành độ từ hóa ngang. Vùng mô có độ từ hóa dọc được lật hoàn toàn thành độ từ hóa ngang được xem như đã đạt tình trạng đã bão hòa (saturated). Lúc này nếu nhiễu phá độ từ hóa ngang, vùng mô đã bão hòa sẽ “trơ” đối với xung kích thích và không có tín hiệu. Xung chuẩn bị loại này được gọi là xung bão hòa (saturation pulse).

Mỗi xung bão hòa được chọn hoàn toàn phụ thuộc vào vùng mô cần xóa tín hiệu. Tuy nhiên về cơ bản, xung bão hòa bao gồm một xung được thiết kế đặc biệt để kích thích vùng mô cần xóa, lật hoàn toàn độ từ hóa dọc của vùng mô này thành độ từ hóa ngang. Sau đó sử dụng một thang từ hoặc một xung khác nhiễu phá độ từ hóa ngang, tương tự như kỹ thuật nhiễu phá được dùng trong chuỗi xung GRE có nhiễu phá. Kết quả là vùng mô không còn độ từ hóa dọc lẫn độ từ hóa ngang. Vì vậy khi xung kích thích được phát ra sau đó, nó hoàn toàn trơ và không cho ra tín hiệu.

Để cho cụ thể hơn, chúng tôi sẽ nêu ra ba kỹ thuật xung bão hòa được sử dụng khá rộng rãi trong thực tế lâm sàng: bão hòa chọn lọc vùng, bão hòa chọn lọc độ xê dịch hóa học và kỹ thuật truyền độ từ hóa MT.

Bão hòa chọn lọc vùng

Mục đích của xung bão hòa chọn lọc vùng là làm bão hòa một vùng cơ thể không muốn có tín hiệu. Thông thường người ta dùng một xung bão hòa cho mỗi xung kích thích, mặc dù trong các kỹ thuật chụp nhanh, người ta có thể dùng một xung bão hòa chung cho nhiều xung kích thích.

Một trong những ứng dụng phổ biến nhất của xung bão hòa loại này là bão hòa dòng chảy hoặc bão hòa các mô chuyển động. Chúng ta biết rằng dòng chảy của máu hoặc sự chuyển động của mô là một nguyên nhân gây ra các ảnh giả hoặc ảnh nhiễu (artifact). Tình trạng này xảy ra bởi vì trong thực tế chúng ta luôn phải mất một khoảng thời gian nhất định giữa lúc phát xung kích thích và lúc đo nhận tín hiệu. Để làm mất tín hiệu của phần dòng chảy hiện diện tại vùng cơ thể cần khảo sát, người ta tính toán tốc độ của dòng chảy và phát một xung bão hòa cho toàn bộ vùng cơ thể hiện đang chứa phần dòng chảy vốn sẽ đi vào vùng cơ thể cần khảo sát vào khoảng thời gian phát xung kích thích. Nhờ vậy khi phát xung kích thích cho vùng cơ thể cần khảo sát, phần dòng chảy đã bị bão hòa và không có tín hiệu.

Bão hòa chọn lọc độ xê dịch hóa học

Như chúng ta đã biết sự khác biệt giữa tần số cộng hưởng từ của các proton trong các phân tử được gọi là độ xê dịch hóa học (chemical shift). Mặt khác, do đặc thù cấu tạo hóa học của mình, nước và mỡ là những loại phân tử thực sự tạo ra tín hiệu cộng hưởng từ, chủ yếu là từ các proton có mặt trong phân tử của chúng. Nói cách khác, hình ảnh cộng hưởng từ chẳng qua là bản đồ phân bố nước và mỡ trong cơ thể. Do vậy, độ xê dịch hóa học giữa nước và mỡ có thể được sử dụng khi cần xóa bỏ tín hiệu của một trong hai chất này.

Theo đó, để xóa mỡ bằng phương pháp bão hòa mỡ (fat saturation), người ta dùng một xung có tần số phù hợp với tần số quay của proton của mỡ, lật hoàn toàn độ từ hóa dọc của nó thành độ từ hóa ngang rồi nhiễu phá độ từ hóa ngang. Xung bão hòa được thiết kế cho mục đích này hầu như không có tác dụng gì trên proton của nước. Do vậy khi xung kích thích được phát ra, chỉ có nước là thành phần tham gia tạo tín hiệu; tín hiệu của mỡ lúc này không có. Ngược lại nếu muốn xóa tín hiệu của nước, người ta thực hiện tương tự: sử dụng một xung bão hòa nước rồi sau đó phát xung kích thích. Tín hiệu lúc này chỉ là tín hiệu của mỡ.

Cũng có thể phối hợp kỹ thuật xung bão hòa với một kỹ thuật khác. Chẳng hạn nếu muốn có ảnh “thuần silicon” ở những người bơm hoặc ghép silicon vào ngực, người ta có thể phối hợp chuỗi xung STIR (xóa mỡ) với kỹ thuật bão hòa nước để xóa nước. Kết quả là chỉ còn lại tín hiệu từ silicon, cho ra một ảnh thuần silicon.

Cũng cần nói thêm rằng khi sử dụng chuỗi xung bão hòa mỡ, vốn thường được gọi là xung Fatsat (FS), góc lật của xung bão hòa thường lớn hơn 90o. Vì thời gian T1 của mỡ khá ngắn nên nếu sử dụng góc lật 90o, độ từ hóa dọc có thể sẽ được khôi phục lại một phần trước khi phá nhiễu xong độ từ hóa ngang, khiến cho hình ảnh vẫn còn sót lại tín hiệu của mô mỡ. Với góc lật được chọn lựa phù hợp, thông thường từ 100o đến 150o, độ từ hóa dọc sẽ khôi phục về zero, cho ra hình ảnh được xóa mỡ tốt hơn.

Kỹ thuật truyền độ từ hóa MT

Dưới tác dụng của các xung kích thích với dải tần số được dùng trong thực tế lâm sàng, chúng ta biết rằng proton trong các đại phân tử như protein và phospholipid của màng tế bào không tạo ra được tín hiệu cộng hưởng từ. Điều này không có nghĩa rằng chúng hoàn toàn “vô tâm” trước hiện tượng cộng hưởng từ. Thực tế là các proton này cũng bị từ hóa và bão hòa. Độ từ hóa sau đó truyền sang cho các proton trong các phân tử nước nằm xung quanh (được gọi là nước tù), làm giảm bớt tín hiệu có thể thu nhận được từ các phân tử nước này. Hiện tượng độ từ hóa bão hòa truyền từ các đại phân tử sang các phân tử nước xung quanh được gọi là hiện tượng truyền độ từ hóa MT (magnetization transfer).

Hiện tượng truyền độ từ hóa MT này có thể được sử dụng khi chúng ta muốn xóa tín hiệu của một số mô mềm bởi vì nước ở mô mềm chủ yếu là nước tù. Để thực hiện điều này, chúng ta dùng một xung bão hòa có tần số thấp hơn hoặc cao hơn dải tần số của nước và mỡ. Với xung bão hòa loại này, hiện tượng truyền từ hóa MT xảy ra, làm giảm hoặc mất tín hiệu của vùng mô mềm cần xóa.

6. KỸ THUẬT KHỬ MỠ

Chúng ta đã biết rằng tín hiệu cộng hưởng từ thu được trong thực tế chủ yếu là tín hiệu của nước và một phần ít hơn là mỡ. Trong các ứng dụng lâm sàng chúng ta gặp nhiều trường hợp cần làm mất tín hiệu của mỡ, chẳng hạn khi muốn làm rõ hơn tình trạng bắt thuốc tương phản của một số tổn thương sau khi tiêm thuốc hay muốn khẳng định mô tổn thương chính là mô mỡ. Lúc này, khử mỡ hay xóa mỡ (fat suppression) bằng một kỹ thuật nào đó là một yêu cầu cần được thực hiện để khẳng định chẩn đoán.

Trong hai phần trước chúng ta đã biết rằng khử mỡ có thể được thực hiện bằng kỹ thuật xung đảo nghịch và kỹ thuật bão hòa. Với kỹ thuật xung đảo nghịch, thời đảo TI cần chọn gần bằng với thời gian T1 của mỡ. Bằng cách đó, mỡ sau khi bị đảo nghịch 180o sẽ khôi phục trong khoảng thời đảo TI về zero. Khi này nếu xung kích thích được phát ra, độ từ hóa dọc của mỡ bằng zero nên không tạo ra được độ từ hóa ngang và vì thế không cho tín hiệu. Với kỹ thuật xung bão hòa, thay vì phát xung đảo nghịch trước khi phát xung kích thích, người ta phát xung bão hòa chọn lọc đối với mỡ. Nghĩa là xung này chỉ làm độ từ hóa dọc của mỡ lật thành độ từ hóa ngang. Tiếp theo sau xung bão hòa mỡ là một xung nhiễu phá hoặc thang từ nhiễu phá để làm mất hoàn toàn độ từ hóa ngang. Sau đó nếu một xung kích thích bình thường được phát ra, chỉ có nước còn độ từ hóa dọc và lật thành độ từ hóa ngang rồi phát ra tín hiệu; mỡ hoàn toàn bị “trơ” đối với xung kích thích này.

Ngoài hai kỹ thuật này, chúng ta bây giờ sẽ tìm hiểu thêm hai kỹ thuật có tác dụng khử mỡ, đó là kỹ thuật Dixon và kỹ thuật kích thích có chọn lọc phổ không gian.

Kỹ thuật Dixon

Chúng ta đã biết rằng tần số quay của proton trong nước và mỡ thật sự không giống nhau và khác biệt này được gọi là độ xê dịch hóa học. Nói chính xác hơn, nước quay nhanh hơn mỡ với độ xê dịch hóa học vào khoảng 3,5 phần triệu (ppm hay parts per million).

Sau khi được kích thích, lúc đầu cả nước và mỡ đều quay cùng pha hay đồng pha (in-phase). Theo thời gian, nước quay nhanh hơn nên giữa chúng bắt đầu lệch pha nhau cho đến lúc chúng nghịch pha hay đối pha (opposed phase), nghĩa là pha chênh nhau 180o. Khi này tín hiệu chung sẽ giảm đi rõ rệt. Tuy nhiên do nước vẫn tiếp tục quay nhanh hơn nên sau một khoảng thời gian giống như trên, nước và mỡ trở lại đồng pha. Khi này tín hiệu chung lại mạnh trở lại.

Kỹ thuật Dixon thực chất là một kỹ thuật đo đạc tín hiệu và xử lý. Theo kỹ thuật này, để có được ảnh khử mỡ, chúng ta thực hiện hai lần đo tín hiệu và tạo ra hai bộ ảnh. Một ảnh đo tại thời điểm nước và mỡ nghịch pha, gọi là ảnh nghịch pha (opposed-phase image); ảnh còn lại đo tại thời điểm nước và mỡ trở lại đồng pha, gọi là ảnh đồng pha (in-phase image). Với từ trường 1,5 T, ảnh nghịch pha đo tại thời điểm 2,25 ms còn ảnh đồng pha đo tại thời điểm 4,5 ms. Hai ảnh đồng pha và nghịch pha có thể được đo riêng rẽ hoặc đo xen kẽ với nhau bằng kỹ thuật điểm vang kép.

Khi cộng tín hiệu của hai ảnh nghịch pha và đồng pha ở khâu xử lý, chúng ta thu được ảnh khử mỡ bằng kỹ thuật Dixon. Nói một cách dễ hiểu, ảnh đồng pha là ảnh “nước+mỡ” còn ảnh nghịch pha là ảnh “nước-mỡ”. Tổng của hai ảnh này là ảnh của nước đã khử mất tín hiệu mỡ.

Kích thích có chọn lọc phổ không gian

Trong kỹ thuật kích thích có chọn lọc phổ không gian (spatial-spectral selective exitation), người ta tìm cách kích thích một mình nước mà không kích thích mỡ. Tuy nhiên sử dụng một xung kích thích duy nhất có tần số hẹp đối với nước lại không hiệu quả. Thay vì thế người ta sử dụng xung tổ hợp (composite pulse). Xung tổ hợp này bao gồm nhiều xung với nhiều góc lật khác nhau, được phát ra tại nhiều thời điểm khác nhau đã được thiết kế một cách hợp lý để tổng tác dụng của chúng là nước có được một độ từ hóa phù hợp còn mỡ không còn độ từ hóa nào. Kết quả là chỉ có nước cho tín hiệu.

7. NHỮNG ĐIỂM CẦN GHI NHỚ

  • Tập hợp các xung và các thang chọn lớp, thang mã tần số cũng như thang mã pha, cùng với thời kích TR và TE phù hợp, tạo thành một chuỗi xung (pulse sequence).

  • Chuỗi xung điểm vang spin SE gồm có một xung kích thích 90ovà một xung tái lập 180o được phát tại thời điểm TE/2, cho ra một điểm vang spin (spin echo) tại thời điểm TE.

  • Chuỗi xung điểm vang thang từ GRE sử dụng một xung kích thích có góc lật nhỏ hơn 90o và không dùng xung tái lập 180o. Thay vì thế nó dùng một thùy khử pha của thang mã tần số để tạo ra một điểm vang.

  • Kỹ thuật khôi phục đảo nghịch IR gồm một xung đảo 180o được phát trước khi phát xung kích thích 90o một thời đảo TI thích hợp để làm cho độ từ hóa dọc của một mô cần xóa có giá trị zero tại thời điểm phát xung kích thích. Xung STIR được dùng để xóa mỡ có thời đảo TI khá ngắn. Xung FLAIR được dùng để xóa các dịch, nhất là dịch não tủy, với thời đảo rất dài (trên 2000 ms).

  • Giống với kỹ thuật xung đảo nghịch, kỹ thuật bão hòa sử dụng một xung chuẩn bị trước khi phát xung kích thích với mục đích làm bão hòa một loại mô nào đó. Kỹ thuật bão hòa có thể dùng để xóa tín hiệu của mỡ, của nước hoặc của dòng chảy.

  • Để xóa tín hiệu của mỡ, ngoài cách dùng kỹ thuật khôi phục đảo nghịch và bão hòa, người ta còn có thể dùng kỹ thuật Dixon và kích thích có chọn lọc phổ không gian.

Nguồn: Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 5, NXB ĐHQG TPHCM, Trang 71-88.

 

 

 

 

 

 

 

 

 

PHẦN 3: NGUYÊN LÝ TƯƠNG PHẢN CỘNG HƯỞNG TỪ

 Một hình ảnh y học chỉ có ích khi nó cho phép chúng ta phân định rõ ràng các cấu trúc giải phẫu, kể cả các cấu trúc bất thường. Nói cách khác, các cấu trúc khác nhau cần được thể hiện trên hình với một mức độ khác biệt nhất định để chúng ta có thể xác định được ranh giới giữa chúng. Trong thực tế, sự khác biệt thường được biểu hiện bằng màu sắc khác nhau, phổ biến hơn là mức độ trắng đen khác nhau. Khi đó mức độ khác biệt trắng đen được gọi là độ tương phản (contrast). Trong thực tế, độ tương phản có thể được xem là một trong những chỉ số quan trọng nhất của một hình ảnh y học. Mục tiêu của phần này tập trung vào việc trình bày các nguyên lý tương phản được sử dụng trong các hình cộng hưởng từ. Nội dung cụ thể bao gồm:

  • Các tham số thời gian và góc lật
  • Nguyên lý tương phản cộng hưởng từ
  • Nguyên lý tương phản trọng T1
  • Nguyên lý tương phản trọng T2
  • Nguyên lý tương phản trọng đậm độ proton

1. CÁC THAM SỐ THỜI GIAN VÀ GÓC LẬT

Để sử dụng được các tính chất thời gian T1 và T2 của các mô, chúng ta cần chọn một thời điểm phù hợp để đo tín hiệu. Thoạt tiên chúng ta có thể cho rằng thời điểm tốt nhất là thời điểm vừa tắt xung kích thích vì lúc này, tín hiệu cộng hưởng từ mạnh nhất. Thế nhưng vấn đề không hoàn toàn đơn giản như vậy. Thứ nhất, lượng tín hiệu thu được trong một lần đo chưa đủ để chúng ta tạo lập được hình ảnh, vì vậy chúng ta cần phải đo nhiều lần. Thứ hai, như vừa lý luận ở trên, sự khác biệt tín hiệu giữa các mô là một yếu tố quan trọng hơn cường độ tín hiệu của từng mô bởi vì chính nó cho phép tạo ra một độ tương phản nhất định giữa các mô. Trong phần này chúng ta thử xem một số tham số thời gian có ảnh hưởng đến độ tương phản này.

Thời kích TR

Như đã nói ở trên, nếu chỉ kích thích một lần rồi đo tín hiệu, lượng dữ liệu của một lần đo như thế không đủ để chúng ta xây dựng ảnh cộng hưởng từ. Trong thực tế, chúng ta phải sử dụng xung kích thích nhiều lần, khoảng thời gian giữa hai lần phát xung kích thích được chọn cho phù hợp và được gọi là thời kích hoặc thời lặp TR (repetition time).

Thời kích TR này có liên quan mật thiết với thời gian T1 của mô. Giả sử chúng ta đang xem xét một mô có thời gian T1. Sau khi xung kích thích đầu tiên được phát ra, chúng ta đợi một khoảng thời gian TR để phát xung thứ hai. Lúc này chúng ta gặp một trong hai tình huống:

1. Thời kích TR dài bằng hoặc hơn hẳn so với T1, hoặc

2. Thời kích TR nhỏ hơn nhiều so với T1

Trong tình huống (1), do thời kích TR dài bằng hoặc hơn T1 nên khi phát xung lần thứ hai, độ từ hóa dọc hầu như đã khôi phục lại hoàn toàn và vì thế, tín hiệu cộng hưởng từ có được sau khi phát xung lần hai cũng giống tín hiệu sau khi phát xung lần một.

Thế nhưng trong tình huống (2), thời kích TR ngắn hơn nhiều so với T1 nên khi phát xung lần hai, độ từ hóa dọc chỉ mới khôi phục một phần (Mz). Ở lần này, độ từ hóa dọc một phần Mz này bị lật ngang vào mặt phẳng xy, tạo ra một độ từ hóa ngang Mxy nhỏ hơn so với độ từ hóa ngang của lần phát xung đầu tiên. Độ từ hóa ngang lần hai này tạo ra tín hiệu lần hai nhỏ hơn so với tín hiệu lần một (Hình 1).

Với những lần phát xung tiếp theo sau được lặp lại sau mỗi khoảng TR, độ từ hóa dọc Mz được khôi phục lại dưới tác dụng của từ trường B0 sẽ khá ổn định và có độ lớn tùy theo sự chênh lệch giữa TR với T1 của mô. Nói một cách cụ thể hơn, chúng ta có kết quả sau:

1. Nếu TR và T1 gần như bằng nhau hoặc TR dài hơn T1, tín hiệu cộng hưởng từ được tạo ra mạnh nhất.

2. Ngược lại, nếu TR ngắn hơn nhiều so với T1, tín hiệu cộng hưởng từ sẽ yếu hơn so với trường hợp (1).


Hình
1: Tác dụng tạo tín hiệu cộng hưởng từ của một thời kích TR ngắn hơn so với thời gian T1 của một mô. (a) Xung kích thích lần đầu tiên làm lật Mo vào mặt phẳng ngang. (b) Xung kích thích lần hai xảy ra khi độ từ hóa dọc Mz 
chỉ mới khôi phục một phần, tạo ra Mxy nhỏ hơn nhiều so với lần một.

Kết quả này sẽ được vận dụng trong Phần 3 để tạo ra hình trọng T1 hay ảnh tương phản theo T1.

Góc lật

Từ trước đến giờ chúng ta vẫn ngầm định với nhau rằng xung kích thích đang được sử dụng là xung 90o, nghĩa là xung kích thích tạo một góc lật 90o. Trong phần này chúng ta xét đến khả năng sử dụng những xung kích thích có góc lật nhỏ hơn 90o.

Thử quan sát Hình 2. Độ từ hóa dọc và độ từ hóa ngang khi góc lật 90o được vẽ bằng các vectơ xám. Trong Hình 2a, chúng ta sử dụng một góc lật lớn gần bằng 90o. Khi đó, độ từ hóa ngang được tạo ra có nhỏ hơn chút ít so với trường hợp góc lật 90o. Bù lại độ từ hóa dọc Mz chưa bị lật hoàn toàn và vẫn còn lại một ít (các vectơ đậm). Kết quả là tín hiệu cộng hưởng từ được tạo ra không giảm bao nhiêu so với trường hợp góc lật 90o.

Quan sát tiếp Hình 2b, chúng ta thấy góc lật khá nhỏ so với 90o. Khi đó, độ từ hóa dọc chỉ bị mất một ít để chuyển thành độ từ hóa ngang, cho ra tín hiệu cộng hưởng từ không mạnh bằng so với khi dùng góc lật lớn. Hơn thế nữa, do độ từ hóa dọc hầu như còn nguyên nên chúng ta mất ít thời gian để khôi phục lại hoàn toàn độ từ hóa dọc. Do vậy nếu chúng ta dùng thời kích TR ngắn, độ từ hóa dọc vẫn được khôi phục hoàn toàn.

Những nhận xét trên cho phép chúng ta rút ra được điều gì? Trước tiên chúng ta cần nhấn mạnh rằng tín hiệu cộng hưởng từ được tạo ra là do độ từ hóa ngang quay quanh trục z, do vậy khi độ từ hóa ngang nhỏ, tín hiệu  cộng hưởng từ yếu. Trong phần trước chúng ta cũng đã biết rằng nếu T1 của mô khá dài thì khi dùng thời kích TR ngắn, chúng ta chỉ có được một độ từ hóa ngang nhỏ, sinh ra một tín hiệu yếu. Tuy nhiên nếu biết cân đối thì trong trường hợp này, chúng ta vẫn có thể thu được một tín hiệu cộng hưởng từ đủ mạnh bằng cách chọn một góc lật thích hợp.


Hìn
h 2: Ảnh hưởng của góc lật đối với độ từ hóa dọc và độ từ hóa ngang. 
(a) Với góc lật lớn gần bằng 90o, độ từ hóa dọc lật hầu như hoàn toàn thành độ từ hóa ngang, chỉ còn lại một ít chưa lật hết. (b) Với góc lật nhỏ hơn nhiều so với 90o, độ từ hóa dọc chỉ lật một ít thành độ từ hóa ngang và hầu như còn nguyên.

Về mặt lý thuyết, nếu chúng ta định dùng một thời kích TR trên một mô có thời gian T1 đã biết, góc lật tối ưu cho phép tạo ra được tín hiệu mạnh nhất có thể được tính bằng công thức sau đây:

Góc tối ưu = arccos(e-TR/T1)

trong đó e ≈ 2,7282 là cơ số của logarit tự nhiên. Góc lật tối ưu ứng với các giá trị TR và T1 cho trước còn được gọi là góc Ernst (Richard Ernst là một trong những người có những đóng góp quan trọng nhất cho kỹ thuật chụp ảnh cộng hưởng từ y học. Năm 1991, ông nhận được giải Nobel vì những đóng góp này).

Như vậy khi chúng ta muốn dùng thời kích TR ngắn nhưng vẫn muốn có được tín hiệu đủ mạnh trên các mô có T1 dài, sử dụng một góc lật nhỏ là một kỹ thuật thích hợp. Vấn đề này sẽ được xem xét lại trong những phần sau khi chúng ta nói đến các kỹ thuật làm giảm bớt thời gian đo tín hiệu cộng hưởng từ.

Thời vang TE

Như chúng ta đã biết, tín hiệu cộng hưởng từ ngay sau khi tắt xung luôn là tín hiệu mạnh nhất. Tuy nhiên vì cần phải thực hiện thêm một số kỹ thuật quan trọng khác trước khi đo tín hiệu nên trong thực tế, chúng ta luôn có một khoảng thời gian nhất định kể từ lúc tắt xung kích thích đến lúc đo tín hiệu. Khoảng thời gian này được gọi là thời vang TE (echo time).

Sở dĩ gọi là thời vang vì tín hiệu đo được lúc này không phải là tín hiệu gốc ban đầu mà là tín hiệu đã được tái lập lại bằng một kỹ thuật thích hợp. Nói cách khác, tín hiệu đo được là tín hiệu vọng lại hay một điểm vang (echo) của tín hiệu ban đầu. Ngay trong phần tiếp theo chúng ta sẽ gặp một kỹ thuật tái lập lại tín hiệu rất độc đáo được dùng trong một chuỗi xung căn bản là chuỗi xung điểm vang spin (viết tắt là chuỗi xung SE).

Cần nhắc lại rằng thời gian T2 chính là thời gian xảy ra hiện tượng suy giảm tín hiệu FID. Do vậy thời vang TE có mối liên hệ chặt chẽ với thời gian T2 của một mô. Khi TE khá nhỏ so với T2, tín hiệu thu được lúc này còn khá mạnh. Tuy nhiên khi TE dài gần bằng T2, tín hiệu thu được sẽ yếu vì đã bị suy giảm nhiều.

Chúng ta cũng biết rằng trong thực tế, do tác động của từ trường cục bộ không đồng nhất vốn luôn tồn tại trong các mô, thời gian suy giảm tín hiệu thực tế còn ngắn hơn nữa. Thời gian này gọi là T2*. Như vậy nếu TE khá ngắn, tín hiệu thu được vẫn còn là tín hiệu chịu ảnh hưởng của T2. Khi TE dài hơn, ảnh hưởng của T2* càng rõ, và tín hiệu thu  được  lúc  này  càng  biểu  hiện  cho  tình  trạng  không  đồng  nhất  của  từ trường cục bộ.

Xung tái lập 180o

Theo như phân tích ở trên, thời vang TE cho phép chúng ta có đủ thời gian để thực hiện một số kỹ thuật cần thiết trước khi đo tín hiệu. Tuy nhiên qua thời gian, số proton quay lệch pha nhau càng nhiều và đây là nguyên nhân của hiện tượng suy giảm tín hiệu FID.

Bây giờ thử quan sát các proton đang quay trong mặt phẳng xy tại một số thời điểm sau khi tắt xung kích thích. Trên Hình 3, mỗi proton được biểu thị bằng một vectơ nhỏ. Ở Hình 3a, các proton sau khi tắt xung kích thích đang cùng pha, tạo ra một vectơ lớn nhất tại vạch xuất phát. Trên hình này, chúng ta xem như trục x là vạch xuất phát. Sau đó do sự khác biệt về tốc độ quay, chúng dần dần lệch pha nhau: các proton quay nhanh hơn vượt dần lên trước, các proton quay chậm rớt lại phía sau như được minh họa trong Hình 3b. Ở đây, proton có vectơ xám chạy chậm và rớt hẳn lại phía sau, nghĩa là nó nằm gần vạch xuất phát (đường chấm đứt đoạn).

Bây giờ, nếu tại thời điểm TE/2, nghĩa là sau khi hết khoảng một nửa thời vang TE, chúng ta phát ra một xung 180o. Tác dụng của xung là làm lật các proton 180o, đồng nghĩa với việc lật úp mặt phẳng xy quanh trục xuất phát ban đầu. Lúc này, các proton đang chạy “lật đật” phía sau “bỗng dưng” lại trở thành những proton dẫn đầu (Hình 3c). Tuy nhiên do chúng vẫn quay chậm hơn nên trong khoảng nửa thời gian TE còn lại, chúng dần bị các pro- ton chạy nhanh bắt kịp. Vì vậy tại đúng thời điểm đo TE như trên Hình 3d, tín hiệu đã được tái lập, tạo ra một điểm vang (echo). Xung 180o được dùng với mục đích này gọi là xung tái lập (refocusing pulse).

Về cơ bản, xung tái lập đã hóa giải được các nguyên nhân làm cho các pro- ton lệch pha nhau do tình trạng không đồng nhất của từ trường cục bộ. Kỹ thuật độc đáo này hiện nay đã trở thành một trong những kỹ thuật căn bản của cộng hưởng từ. Các chuỗi xung điểm vang spin hay spin echo (SE) mà chúng ta sẽ nghiên cứu trong các phần tiếp theo đều dựa trên nền tảng của kỹ thuật này.


Hìn
h 3: Kỹ thuật dùng xung tái lập 180o để thu được một điểm vang cần thiết tại thời điểm đo tín hiệu TE. Trong (a), các proton đang cùng pha tại thời điểm ngay sau khi tắt xung kích thích. Theo thời gian, các proton lệch pha nhau, dẫn đến tình huống của (b) tại thời điểm TE/2. Trong (c), sau khi phát xung tái lập 180o, các proton bị lật qua phía bên đối diện của vạch xuất phát, khiến cho các proton quay chậm lại đứng trước các proton quay nhanh. Cuối cùng vào thời điểm TE như trong (d), các proton lại cùng pha, tạo ra một điểm vang.

2.  NGUYÊN LÝ TƯƠNG PHẢN CỘNG HƯỞNG TỪ

Chúng ta đã biết rằng mục tiêu quan trọng nhất của các kỹ thuật chụp ảnh y học là khả năng phân định rõ ràng các cấu trúc giải phẫu, nhờ đó chúng ta dễ dàng phát hiện các cấu trúc bất thường ngay cả khi kích thước của chúng còn rất nhỏ. Trên một hình trắng đen, các cấu trúc cạnh nhau có thể “phân biệt được” nếu chúng có mức độ trắng-đen khác nhau đủ để mắt phân biệt được.

Khác biệt về mức độ trắng-đen giữa các cấu trúc trên một hình ảnh y học được gọi là độ tương phản (contrast). Yêu cầu tạo ra được một độ tương phản cao giữa các cấu trúc nằm cạnh nhau có thể được xem là một trong những yêu cầu quan trọng nhất của mọi kỹ thuật chụp ảnh y học. Cộng hưởng từ là một kỹ thuật chụp ảnh y học tạo được độ tương phản tốt nhất hiện nay đối với nhiều cấu trúc trong cơ thể.

Theo cách hiểu thông thường, ảnh chụp cộng hưởng từ là hình ảnh phân bố nước và mỡ (chủ yếu là nước) trong các mô cơ thể. Điều này nghe có vẻ như nơi đâu có nhiều nước, nơi đó có nhiều tín hiệu cộng hưởng từ. Cách hiểu giản đơn như vậy chỉ đúng một phần. Trước tiên, như chúng ta đã biết, tỷ lệ nước tự do và nước tù trong mô có ảnh hưởng trực tiếp đến các thời gian hồi giãn của mô: mô có nhiều nước tự do sẽ có các thời gian hồi giãn dài hơn mô có ít nước tự do. Thứ hai, bởi vì tín hiệu cộng hưởng từ bị suy giảm theo thời gian, thời điểm đo tín hiệu có ảnh hưởng trực tiếp đến lượng tín hiệu thu được. Thời gian hồi giãn và thời điểm đo tín hiệu có thể được dùng phối hợp để có được các loại ảnh cộng hưởng từ với những đặc điểm tương phản khác nhau, không hoàn toàn biểu thị cho sự phân bố nước trong các mô cơ thể.

Kỹ thuật chụp ảnh cộng hưởng từ sử dụng cường độ tín hiệu thu được từ các proton của nước và mỡ có mặt trong các mô để tạo ảnh. Cường độ tín hiệu của mô càng mạnh, hình ảnh cộng hưởng từ của mô đó càng trắng. Như vậy, mức độ trắng-đen của mô trên ảnh cộng hưởng từ biểu thị cho cường độ tín hiệu được phát ra từ mô. Trong thực hành lâm sàng, người ta thường dùng thuật ngữ tín hiệu cao (high signal) để mô tả một vùng “trắng” và thuật ngữ tín hiệu thấp (low signal) để mô tả một vùng “đen” trên hình cộng hưởng từ. Khi muốn chỉ rõ sự khác biệt tín hiệu giữa các mô (độ tương phản), người ta dùng các thuật ngữ cường độ mạnh (hyperintensity), cùng cường độ (isointensity) và cường độ yếu (hypointensity).

Để có được một độ tương phản tốt trên ảnh, kỹ thuật chụp ảnh cộng hưởng từ hiện sử dụng nhiều nguyên lý tương phản khác nhau. Trong phần này chúng ta sẽ nghiên cứu ba nguyên lý tương phản cơ bản được sử dụng thường xuyên trong các hệ thống chụp ảnh cộng hưởng từ là:

  1. Nguyên lý tương phản trọng T1 dựa trên sự khác biệt về thời gian T1, cho ra một loại ảnh cộng hưởng từ có tên gọi là hình trọng T1 (T1- weighted image hay T1W)

  2. Nguyên lý tương phản trọng T2 dựa trên sự khác biệt về thời gian T2, cho ra một loại ảnh cộng hưởng từ có tên gọi là hình trọng T2 (T2- weighted image hay T2W)

  3. Nguyên lý tương phản trọng đậm độ proton dựa trên sự khác biệt về đậm độ proton trong mô, cho ra một loại ảnh cộng hưởng từ có tên gọi là hình trọng đậm độ proton (proton density-weighted image hay PDW)

Ngoài ba loại hình ảnh tương phản nêu trên, kỹ thuật cộng hưởng từ cũng sử dụng một số nguyên lý tương phản khác. Chẳng hạn như dựa vào khả năng khuyếch tán của nước trong cơ thể, kỹ thuật cộng hưởng từ có thể tạo ra một loại ảnh được gọi là hình trọng khuyếch tán (Diffusion-weighted  Image hay DWI). Nguyên lý tương phản trọng khuyếch tán rất có giá trị  trong lĩnh vực hình ảnh học thần kinh, đặc biệt là phát hiện tình trạng nhồi máu não giai đoạn sớm giúp các thầy thuốc lâm sàng có cơ sở để thực hiện điều trị tích cực.

3.  NGUYÊN LÝ TƯƠNG PHẢN TRỌNG T1

Một hình trọng T1 được tạo lập dựa trên sự khác biệt thời gian T1 giữa các mô. Để có được một hình như thế, chúng ta cần chọn thời kích TR và thời vang TE sao cho các thời gian T1 khác nhau càng nhiều sẽ phát ra tín hiệu cộng hưởng từ có cường độ khác nhau càng lớn.

Như chúng ta đã biết từ những phần trước, tín hiệu cộng hưởng từ phụ thuộc vào độ lớn của vectơ từ hóa ngang trong mặt phẳng xy. Độ từ hóa ngang này đến lượt nó lại phụ thuộc vào độ lớn của vectơ từ hóa dọc và góc lật a (xem Phần 1): khi a = 90o, độ từ hóa dọc bị lật hoàn toàn thành độ từ hóa ngang; khi a nhỏ hơn 90o, độ từ hóa dọc chỉ bị lật một phần. Trong cả hai trường hợp, độ lớn của vectơ từ hóa dọc có ảnh hưởng đến độ lớn của vectơ từ hóa ngang, và vì vậy ảnh hưởng đến cường độ tín hiệu cộng hưởng từ.

Chúng ta xem lại tình huống ngay trước lần phát xung kích thích đầu tiên. Dưới tác dụng của từ trường ngoài B0, proton trong các mô lúc này cùng nhau tạo thành độ từ hóa thực Mo. Thế rồi xung kích thích thứ nhất được phát ra, độ từ hóa thực Mo bị lật thành độ từ hóa ngang Mxy trong mặt phẳng xy. Sau khi tắt xung, độ từ hóa dọc bắt đầu được khôi phục. Tốc độ khôi phục độ từ hóa dọc ở các mô tùy thuộc vào thời gian T1 của chúng: mô có T1 ngắn khôi phục độ từ hóa dọc nhanh hơn so với mô có T1 dài. Lúc đầu, vectơ từ hóa dọc của các mô có T1 ngắn sẽ lớn hơn vectơ từ hóa dọc của các mô có T1 dài. Dần dà theo thời gian, khác biệt độ lớn giữa các vectơ từ hóa dọc của các mô có T1 dài ngắn khác nhau sẽ bị thu hẹp lại để rồi cuối cùng chúng sẽ bằng nhau và bằng với vectơ từ hóa thực Mo sau một khoảng thời gian đủ lớn tính từ lúc tắt xung kích thích lần đầu.

Tuy nhiên nếu cho phát xung kích thích lần hai tại một thời điểm khá ngắn so với thời điểm phát xung lần một, nghĩa là thời kích TR ngắn, khác biệt thời gian T1 giữa các mô sẽ bộc lộ rõ: các T1 ngắn đã hồi phục độ từ a dọc khá nhiu so với c T1 dài nên trong ln thứ hai phát xung kích thích sẽ có độ từ hóa ngang lớn hơn, tạo ra tín hiệu cộng hưởng từ mạnh hơn các mô có thời gian T1 dài. Ở những lần phát xung tiếp theo với cùng thời kích TR, chúng ta cũng có kết quả tương tự bởi vì độ lớn của vectơ từ hóa dọc hồi phục lại được sau mỗi xung kích thích phụ thuộc vào từ trường ngoài B0 và thời gian T1, vốn là những đại lượng không đổi. Do vậy, chọn một thời kích TR ngắn sẽ bộc lộ rõ ràng sự khác biệt thời gian T1 của các mô. Khi đó, các mô có T1 ngắn sẽ cho tín hiệu mạnh; ngược lại các mô có thời gian T1 dài sẽ cho tín hiệu yếu (Hình 4). Hình ảnh tạo ra dựa trên sự khác biệt T1 được gọi là hình trọng T1 (T1-weighted image).


Hìn
h 4: Hình trọng T1 cắt ngang não ỏ mức não thất bên cho thấy rất rõ cấu trúc chất xám-chất trắng của mô não. Trên hình trọng T1, chất xám có màu xám (vỏ não và các nhân xám trung ương) còn chất trắng có màu trắng. Lý do là do chất trắng có T1 ngắn hơn so với chất xám nên cho tín hiệu mạnh hơn. Chú ý rằng lớp viền thật sáng quanh sọ là lớp mỡ dưới da có T1 rất ngắn. Vùng đen giữa hình ngăn cách bởi một viền trắng là hình ảnh hai não thất bên với tín hiệu rất yếu của dịch não tủy vì có T1 rất dài.

Thế nhưng thời kích TR bao nhiêu mới được gọi là ngắn? Không có một giá trị cụ thể nào như thế. Tuy nhiên để độc giả dễ hình dung, chúng tôi tạm đưa ra một con số dễ nhớ: thời kích TR nhỏ hơn 1000 ms (dưới 1 giây) có thể được xem là ngắn.

Bây giờ đến thời vang TE. Để có được một hình có độ tương phản tốt nhất trên một hình trọng T1, chúng ta cũng cần chọn thời vang TE ngắn vì theo thời gian, tín hiệu cộng hưởng từ sẽ suy giảm dần. Trong thực hành, TE dưới 30 ms có thể được xem như TE ngắn.

Chúng ta có thể tóm tắt một số điểm chính về loại hình trọng T1 như sau:

  1. Một hình trọng T1 được tạo lập bằng cách dùng thời kích TR ngắn cùng với thời vang TE ngắn.

  2. Trên một hình trọng T1, các mô có T1 ngắn sẽ có tín hiệu mạnh (màu trắng) còn các mô có T1 dài sẽ có tín hiệu yếu (màu đen). Cụ thể, mỡ có màu trắng nhất, các mô mềm có màu xám hơn còn các loại dịch cho màu đen trên hình trọng

4.  NGUYÊN LÝ TƯƠNG PHẢN TRỌNG T2

Nguyên lý tương phản thứ hai được xem xét trong phần này dựa vào sự khác biệt thời gian T2 giữa các mô. Chúng ta cần nhớ lại rằng theo thời gian, tín hiệu cộng hưởng từ sẽ yếu dần do hiện tượng suy giảm cảm ứng tự do FID. Thời gian suy giảm tín hiệu chính là thời gian T2. Nếu dùng thời vang TE ngắn, nghĩa là nếu đo tín hiệu thật sớm, sự suy giảm tín hiệu của các mô lúc này chưa nhiều nên sự khác biệt tín hiệu giữa các mô không rõ.

Thế nhưng nếu đo tín hiệu trễ hơn, nghĩa là thời vang TE dài, các mô có T2 ngắn sẽ bị mất khá nhiều tín hiệu còn các mô có T2 dài lúc này chỉ suy giảm một ít, làm cho sự khác biệt tín hiệu giữa các mô có thời gian T2 khác nhau rõ ràng hơn (Hình 5). Hình ảnh thu được dựa trên nguyên lý tương phản do thời gian T2 này được gọi là hình trọng T2 (T2-weighted image).

Theo nguyên lý này, chúng ta cần dùng thời vang TE dài để bộc lộ rõ sự khác biệt tín hiệu giữa các mô có thời gian T2 khác nhau. Như chúng ta đã biết trong phần trước, thời vang dài ngắn không có một mốc cụ thể. Thông thường, thời vang TE lớn hơn 80 ms có thể được xem là TE dài.

Thế nhưng không giống như trong nguyên lý tương phản trọng T1, ở đó chúng ta cần dùng thời kích TR ngắn để có được sự khác biệt tín hiệu giữa các mô dựa trên T1, trong nguyên lý tương phản trọng T2, chúng ta cần dùng thời kích TR dài để cho các mô có đủ thời gian hồi phục hoàn toàn vectơ từ hóa dọc, để rồi sau đó nó sẽ lật thành vectơ từ hóa ngang, phát ra tín hiệu cộng hưởng từ có cường độ mạnh nhất có thể có. Trên cơ sở tín hiệu cộng hưởng từ sau khi ngừng phát xung kích thích, tốc độ suy giảm tín hiệu sẽ được tận dụng để tạo ra độ tương phản.

Nói tóm lại, chúng ta cần nhớ một số điểm chính yếu về hình trọng T2 như sau:

  1. Hình trọng T2 được tạo lập bằng cách dùng thời kích TR dài cùng với thời vang TE dài.

  2. Trên một hình trọng T2, các mô có T2 dài sẽ có tín hiệu mạnh (màu trắng) còn các mô có T2 ngắn sẽ có tín hiệu yếu (màu đen). Cụ thể, các chất dịch như dịch não tủy có màu trắng nhất, các mô mềm có màu xám hơn. Các mô có tín hiệu suy giảm cực nhanh (T2 cực ngắn) như vỏ xương hầu như không có tín hiệu nên rất đen trên hình trọng T2.


Hìn
h 5: Một hình trọng T2 cắt dọc đứng vùng cột sống thắt lưng cho thấy rõ các đốt sống, đĩa đệm, các thành phần trong ống sống và các mỏm ngang của đốt sống. Một điểm rất đáng chú ý là dịch não tủy trong ống sống rất trắng trên hình trọng T2 do có thời gian T2 dài. Chúng bao quanh một vệt đen là phần cuối của chóp tủy kéo dài thành chùm đuôi ngựa.

5. NGUYÊN LÝ TƯƠNG PHẢN TRỌNG ĐẬM ĐỘ PROTON

Ngoài hai nguyên lý tương phản đã nêu, người ta còn dùng nguyên lý tương phản  dựa  trên  đậm  độ  của  proton  trong  các  mô  cơ  thể, cho  ra  loại  hình trọng đậm độ proton (proton density-weighted image hay PDW).

Như chúng ta đã biết, tín hiệu cộng hưởng từ thu được ngay sau khi tắt xung kích thích về nguyên tắc chỉ phụ thuộc vào đậm độ pro- ton có trong mô, nghĩa là phụ thuộc vào lượng nước và mỡ trong mô. Muốn thu được tín hiệu ở giai đoạn này, chúng ta cần dùng thời kích TR đủ dài để có được tín hiệu tốt nhất kèm với thời vang TE ngắn để làm giảm bớt sự suy giảm tín hiệu (Hình 6).


Hình
6: Một hình trọng đậm độ proton cắt ngang não qua một lớp cắt nằm trên mức não thất bên.

Thế nhưng như chúng ta đã biết, tín hiệu cộng hưởng từ chỉ phản ánh một cách tương đối đậm độ proton trong mô. Tỷ lệ giữa lượng nước tù và nước tự do trong mô làm thay đổi các thời gian hồi giãn đặc trưng của mô, và do vậy tín hiệu cộng hưởng từ của mô không hoàn toàn biểu thị cho đậm độ proton trong mô. Độ xê dịch hóa học cũng là một yếu tố làm thay đổi tín hiệu. Chính vì vậy một số tác giả đề xuất không gọi là hình trọng đậm độ proton mà gọi là ảnh trung gian (intermediate-weighted image). Tuy nhiên thuật ngữ hình trọng đậm độ proton đã được sử dụng phổ biến nên trong cuốn sách này nó vẫn được sử dụng.

Để kết thúc phần này, chúng ta tóm tắt ba nguyên lý tương phản cơ bản bằng cách so sánh các tham số TR và TE được dùng cho mỗi loại tương phản (Hình 7).

  1. Thời kích TR và thời vang TE đều ngắn sẽ tạo ra hình trọng T1

  2. Thời kích TR và thời vang TE đều dài sẽ tạo ra hình trọng T2

  3. Thời kích TR dài còn thời vang TE ngắn sẽ tạo ra hình trọng đậm độ proton

  4. Thế còn trường hợp thời kích TR ngắn còn thời vang TE dài? Nói chung chúng không tạo ra được một hình ảnh có ý nghĩa về độ tương phản vì khi dùng TR ngắn, khác biệt tín hiệu giữa các mô có nguồn gốc từ sự khác biệt thời gian T1 nhưng vì lại dùng thời vang TE dài nên sự khác biệt tín hiệu lại không còn đáng kể nữa do lúc này tín hiệu đã bị suy giảm nhiều.

Hình 7. Các dạng tương phản hình ảnh do phối hợp TR và TE.

6. NHỮNG ĐIỂM CẦN GHI NHỚ

Trong phần này chúng ta đã xem xét ba nguyên lý tương phản thường được dùng khi tạo lập ảnh cộng hưởng từ. Dưới đây chúng ta tóm tắt một số khái niệm quan trọng.

  • Khi chụp ảnh cộng hưởng từ, sự khác biệt cấu trúc giữa các mô được xác định bằng sự khác biệt về cường độ tín hiệu giữa chúng. Thông thường, cường độ tín hiệu được biểu hiện trên hình bằng mức độ trắng đen: cường độ càng cao, cấu trúc càng trắng. Mức độ khác biệt trắng đen khi này được gọi là độ tương phản của hình.

  • Để có được đủ dữ liệu cho một ảnh cộng hưởng từ, chúng ta cần phải phát xung kích thích nhiều lần, tương ứng với nhiều lần đo tín hiệu. Khoảng cách thời gian giữa hai lần phát xung kích thích được gọi là thời kích TR. Khoảng cách thời gian từ khi phát xung kích thích đến lúc thực hiện đo tín hiệu được gọi là thời vang TE. Mỗi tín hiệu tại thời điểm đo được gọi là điểm vang (echo).

  • Ngoài thời kích TR và thời vang TE, người ta còn có thể dùng một góc lật a nhỏ hơn 90o. Mục đích là chỉ lật một phần vectơ từ hóa dọc thành vectơ từ hóa ngang đủ để tạo ra một lượng tín hiệu cần thiết, giảm bớt thời gian khôi phục hoàn toàn vectơ từ hóa dọc.

  • Có ba nguyên lý tương phản cơ bản được dùng trong kỹ thuật chụp cộng hưởng từ: nguyên lý trọng T1 sử dụng TR và TE ngắn; nguyên lý trọng T2 sử dụng TR và TE dài; nguyên lý trọng đậm độ proton sử dụng TR dài và TE ngắn.

  • Trên một hình trọng T1, chúng ta dùng một thời kích TR ngắn để bộc lộ rõ sự khác biệt cường độ tín hiệu giữa hai mô có thời gian T1 khác nhau: mô có T1 ngắn hầu như đã khôi phục hoàn toàn độ từ hóa dọc, cho ra độ từ hóa ngang ở lần kích thích tiếp theo khá lớn; trong khi đó mô có T1 dài chỉ khôi phục được một phần nên độ từ hóa ngang tương ứng ở lần kích thích tiếp theo sẽ nhỏ. Khi đó nếu đo tín hiệu tại một thời điểm khá ngắn sau khi phát xung kích thích (thời vang TE ngắn), tín hiệu của mô có T1 ngắn sẽ cao còn tín hiệu của mô có T1 dài sẽ thấp.

  • Trên một hình trọng T2, chúng ta tận dụng sự khác biệt thời gian T2 giữa các mô, nghĩa là tốc độ suy giảm tín hiệu: mô có T2 càng ngắn, tín hiệu suy giảm càng nhanh. Trước tiên chúng ta cần dùng thời kích TR đủ dài để độ từ hóa dọc của các mô đều khôi phục hoàn toàn, cho ra độ từ hóa ngang tốt nhất có thể có. Sau đó phát xung kích thích và thực hiện đo tín hiệu tại một thời điểm khá dài (thời vang TE dài). Lúc này các mô có thời gian T2 ngắn hầu như đã mất hết tín hiệu; các mô có thời gian T2 dài chỉ mất một ít, cho ra một hình trọng T2, trong đó mô có T2 dài sẽ có tín hiệu cao (màu trắng) còn mô có T2 ngắn sẽ có tín hiệu thấp (màu đen).

  • Trên một hình trọng đậm độ proton, chúng ta tận dụng sự khác biệt giữa đậm độ proton của các mô để tạo độ tương phản trên hình bằng cách chọn thời kích TR dài và thời vang TE ngắ Thời kích TR dài cho phép các mô khôi phục hoàn toàn độ từ hóa dọc, tạo ra một độ từ hóa ngang lớn nhất trong lần kích thích tiếp theo. Thời vang TE ngắn cho phép đo được tín hiệu “thật” của các mô vì lúc này tín hiệu ở các mô chưa bị mất nhiều. Sự khác biệt tín hiệu lúc này biểu thị một cách tương đối sự khác biệt của đậm độ proton trong mô.

Tham khảo: 

  1. Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 3, NXB ĐHQG TPHCM, Trang 35-48.
  2. Mriquestions.com
  3. Radiopaedia.org

 

 

 

 

 

 

 

 

 

 

 

 

PHẦN 2: HIỆU ỨNG CỘNG HƯỞNG TỪ CỦA CÁC MÔ

Chúng ta đã biết hiện tượng cộng hưởng từ và hiệu ứng cộng hưởng từ của các hạt proton (hạt nhân nguyên tử hydro). Trong cơ thể sống, hydro có mặt trong thành phần của nhiều hợp chất thiết yếu, đặc biệt là nước và mỡ. Vì vậy, nghiên cứu tính chất cộng hưởng từ của proton có vai trò cực kỳ quan trọng trong quá trình tạo ảnh cộng hưởng từ và là bước đầu tiên giúp chúng ta hiểu được quá trình này.
Chúng ta biết rằng nước là một chất thiết yếu của mọi cơ thể sống và thường chiếm một hàm lượng cao trong tế bào. Ngoài việc tham gia vào cấu trúc của tế bào, nước còn là môi trường để các quá trình sống xảy ra và trong nhiều trường hợp còn tham gia trực tiếp vào các quá trình sống. Với một mật độ cao và một vai trò cực kỳ quan trọng như thế, nước là thành phần chính tạo ra các tín hiệu cộng hưởng từ. Ngoài nước, mỡ cũng là một nguồn tín hiệu cộng hưởng quan trọng do chứa các nguyên tử hydro ở những vị trí “thuận lợi”.
Trong phần này chúng ta sẽ tập trung tìm hiểu về hiệu ứng cộng hưởng từ của các mô cơ thể. Nội dung của phần bao gồm:

  • Độ xê dịch hóa học
  • Đặc tính cộng hưởng từ của nước
  • Thời gian hồi giãn dọc T1
  • Thời gian hồi giãn ngang T2

1. ĐỘ XÊ DỊCH HÓA HỌC

Như chúng ta đã biết, tần số cộng hưởng hay tần số quay f của proton phụ thuộc vào từ trường ngoài B0 và hằng số Larmor g qua phương trình Larmor:

f = γB0

Khi tham gia cấu thành các phân tử, tần số cộng hưởng của proton còn phụ thuộc vào liên kết hóa học giữa proton với các nguyên tử khác và vị trí của proton trong phân tử. Sự khác biệt giữa tần số cộng hưởng của proton do liên kết hóa học và vị trí của proton trong phân tử được gọi là độ xê dịch hóa học (chemical shift).

Thực tế, độ xê dịch hóa học biểu thị sự chênh lệch tương đối giữa tần số quay của các proton trong các phân tử khác nhau, được tính bằng đơn vị ppm (parts per million) hay đơn vị phần triệu. Chẳng hạn, độ xê dịch hóa học giữa nước và mỡ là 3,5 ppm, nghĩa là proton trong nước quay nhanh hơn proton trong mỡ khoảng 3,5 phần triệu.

Khi cường độ từ trường tăng lên, tần số quay của các proton cũng tăng theo. Proton có tần số quay càng nhanh sẽ bị ảnh hưởng nhiều hơn và quay càng nhanh hơn. Nghĩa là sự khác biệt tuyệt đối giữa tần số quay của proton ở hai loại phân tử khác nhau có thay đổi theo cường độ từ trường nhưng độ xê dịch hóa học của chúng không thay đổi.

Liên kết hóa học của proton

Chúng ta biết rằng phân tử nước H2O có hai nguyên tử hydro (proton) và một nguyên tử oxy. Nguyên tử oxy tham gia hai liên kết hóa học với các nguyên tử hydro, một liên kết cho mỗi hydro. Trong mỗi liên kết, nguyên tử oxy và hydro đều đóng góp một điện tử vào đám mây chung (Hình 1a).

Tương tự, trong các phân tử lipid với các gốc methylene CH2 và methyl CH3, nguyên tử carbon cũng tham gia liên kết hóa học với các nguyên tử hydro bằng cách đóng góp một điện tử vào đám mây chung giữa carbon và hydro. Ngoài ra, mỗi nguyên tử carbon còn có thể tham gia vào các liên kết hóa học với hai nguyên tử carbon khác như được minh họa trong Hình 1b.

Độ xê dịch hóa học giữa nước và mỡ

Khi so sánh proton trong phân tử nước H2O và proton trong gốc CH2 hoặc CH3 của lipid, chúng ta thấy rằng ái lực với điện tử của oxy cao hơn của car- bon: oxy của nước giữ đám mây điện tử chung của nó với hydro chặt hơn so với carbon của lipid.

Mặt khác, điện tử vốn mang điện âm, khi quay quanh trục của mình cũng sinh ra một từ trường. Khi điện tử ở gần proton, từ trường này tác động vào proton và làm thay đổi chút ít tần số quay của proton.
Với một từ trường cố định, proton của nước bị ảnh hưởng của điện tử ít hơn so với proton của lipid, và vì vậy proton của nước quay hơi nhanh hơn (Hình 1). Khi từ trường mạnh hơn, proton của nước càng quay nhanh hơn, chênh lệch thực sự về tần số quay của nước và mỡ sẽ lớn hơn.


Hình 1: Liên kết hóa học của proton trong phân tử nước và lipid. (a) Đám mây điện tử chung giữa oxy và hydro bị lệch nhiều về phía oxy, cho phép pro- ton quay nhanh hơn. (b) Đám mây điện tử giữa carbon và hydro trải đều giữa chúng làm cho proton trong các phân tử lipid quay chậm hơn.

Chúng ta cũng cần biết rằng do lipid là loại phân tử có cấu trúc phức tạp nên thực chất tần số quay của proton trong lipid cũng khác nhau tùy theo vị trí của chúng. Nghĩa là bản thân mỡ cũng có độ xê dịch hóa học nội tại của mình. Nói cách khác, mỡ là một chất có độ xê dịch hóa học không đồng nhất.

Ảnh hưởng của độ xê dịch hóa học

Như chúng ta đã biết, tín hiệu cộng hưởng từ phụ thuộc vào “sức mạnh tổng hợp” của các proton. Nghĩa là sau khi tắt xung kích thích, số proton quay cùng pha càng lớn, tín hiệu cộng hưởng từ càng mạnh.

Độ xê dịch hóa học, vốn là sự khác biệt về tần số quay của các proton do đặc thù hóa học của các chất, sẽ nhanh chóng làm cho các proton “xa rời nhau”. Hiện tượng suy giảm cảm ứng tự do khi đó xảy ra rất nhanh, đồng nghĩa với việc tín hiệu cộng hưởng từ nhanh chóng giảm cường độ và biến mất.

Độ xê dịch hóa học còn khiến chúng ta phải tạo ra một xung kích thích có tần số cộng hưởng thích hợp, và đủ bao quát để cộng hưởng được với những proton có tần số cộng hưởng khác nhau. Điều này lại tạo ra một từ trường kém đồng nhất và đến lượt nó, từ trường kém đồng nhất này lại làm mất nhanh tín hiệu cộng hưởng từ.
Tuy nhiên trong một số trường hợp, độ xê dịch hóa học được tận dụng tối đa nhằm làm cho vùng cần khảo sát dễ thấy hơn. Chẳng hạn bằng cách dùng một xung kích thích có tần số thích hợp, người ta có thể làm mất hẳn tín hiệu được phát ra từ các mô mỡ, chỉ còn lại tín hiệu được phát ra từ nước. Nói cách khác, chúng ta đã “xóa mất mỡ” của vùng cần khảo sát trên hình cộng hưởng từ.

Về sau qua từng bối cảnh cụ thể, chúng ta sẽ bàn luận chi tiết hơn về ảnh hưởng của độ xê dịch hóa học và giải thích rõ hơn ý nghĩa của từng điểm đã nêu ở trên.

2. ĐẶC TÍNH CỘNG HƯỞNG TỪ CỦA NƯỚC

Nước có mặt trong tất cả các mô cơ thể. Trong tế bào, nước là thành phần chủ yếu của bào tương, làm dung môi để hòa tan các chất và là môi trường để các quá trình sống xảy ra. Ngoài tế bào, nước có mặt trong các khoảng gian bào, mô kẽ và là thành phần chủ yếu của các chất dịch và máu.

Nhờ sự có mặt ở khắp nơi với mật độ cao và một cấu trúc hóa học với hai proton (hạt nhân hydro), tín hiệu cộng hưởng từ của nước từ các mô khác nhau trong cơ thể là nguồn tín hiệu quan trọng nhất để từ đó chúng ta xây dựng các ảnh cộng hưởng từ. Trong thực tế lâm sàng, các kỹ thuật phát xung và đo đạc tín hiệu chỉ cho phép kích thích và ghi nhận các tín hiệu được phát ra từ nước và mỡ. Do vậy đặc tính cộng hưởng từ của nước là một đề tài quan trọng cần được chú ý đặc biệt.

Mô hình hai khoang

Mặc dù có mặt trong hầu hết các mô với nhiều cấu trúc phức tạp khác nhau nhưng về mặt cộng hưởng từ, chúng ta có thể dùng một mô hình hai khoang đơn giản để mô tả tình trạng của nước: nước tù (bound water) và nước tự do (free water).

Nước tù nói chung là phần nước trong cơ thể bị hạn chế chuyển động. Tình trạng này xảy ra do các phân tử nước bị hút và bị giữ chặt hơn khi chúng nằm gần các phân tử cực lớn như protein, phospholipid và ADN. Những đại phân tử này thường có nhiều điểm tích điện trên bề mặt và có khuynh hướng hút các proton mang điện tích dương. Chúng tạo thành các cầu nối lỏng lẻo làm giảm bớt khả năng chuyển động tự do của các phân tử nước.

Nước tự do là phần nước trong cơ thể có thể chuyển động tự do vì không nằm gần các đại phân tử hoặc trong môi trường không có hoặc có ít các đại phân tử. Nếu môi trường có các đại phân tử, nước tự do bị chúng hút rất yếu nhờ nằm cách xa chúng và lực hút này dễ dàng bị phá vỡ do tốc độ di chuyển của chính các phân tử nước.

Nước trong các mô

Trong các mô mềm như gan, tụy và não với diện tích nội bào lớn, lượng nước tù chiếm nhiều hơn nước tự do. Ngược lại trong dịch não tủy, máu và nước tiểu, lượng nước tự do rõ ràng là chiếm đa phần. Nang và tuyến cũng có lượng nước tự do nhiều hơn đáng kể so với nước tù. Ở mức trung gian, các chất dịch với tỷ lệ protein cao như dịch tiết và dịch khớp cũng làm giảm đáng kể tỷ lệ lượng nước tự do trong dịch.

Đặc tính cộng hưởng từ

Trước tiên chúng ta cần nhấn mạnh rằng proton trong các phân tử nước tù và nước tự do đều có tần số cộng hưởng như nhau, nghĩa là không có độ xê dịch hóa học giữa nước tù và nước tự do. Khác biệt giữa chúng nằm ở chỗ: nước tự do chuyển động nhiều hơn nên tác động của từ trường đối với chúng xảy ra chậm hơn. Ngược lại, do bị các đại phân tử giữ chặt hơn, nước tù cùng với các đại phân tử hình thành một môi trường có cấu trúc khá “ổn định”. Sự ổn định này khiến cho nước tù “nhạy cảm” hơn với sự thay đổi của từ trường ngoài.
Chính vì vậy, tỷ lệ giữa nước tù và nước tự do trong các mô có ảnh hưởng rất lớn đến các thời gian hồi giãn đặc trưng của các mô. Hai phần tiếp theo sẽ bàn luận chi tiết về các đặc tính thời gian cùng với ảnh hưởng của tỷ lệ nước tự do và nước tù trong các mô đối với những đặc tính đó.

3. THỜI GIAN HỒI GIÃN DỌC T1

Khi không có từ trường ngoài tác động, các proton trong môi trường tự quay quanh trục của mình. Hướng của các trục quay hoàn toàn ngẫu nhiên nên mỗi proton mặc dù có một từ trường riêng nhưng tổng từ trường chung của các proton ở trạng thái này vẫn bằng zero.

Khi có một từ trường ngoài B0 thật mạnh tác động vào, các proton trong môi trường bắt đầu định lại trục quay của chính mình cho phù hợp với hướng tác động của từ trường. Theo quy ước, chúng ta xem như hướng tác động này là hướng của trục z. Trục quay của các proton có thể hướng cùng chiều với trục z hoặc ngược chiều với z. Số proton có trục hướng cùng chiều với z chỉ nhiều hơn chút ít so với số proton hướng ngược chiều trong mỗi triệu proton. Tuy khác biệt này rất nhỏ nhưng do số lượng proton trong cơ thể rất lớn (có ý nghĩa nhất là các proton nằm trong nước và mỡ), chúng vẫn tạo ra một từ trường nhỏ gọi là độ từ hóa thực M0 có hướng vectơ (hướng tác động) cùng chiều với chiều vectơ B0 (Hình 2).


Hình 2: Độ từ hóa thực M0 hướng theo trục z được tạo thành do sự chênh lệch về số lượng giữa các proton có trục quay cùng và ngược chiều với B0.

Trong bối cảnh này, độ từ hóa thực cũng chính là độ từ hóa dọc.
Khi phát ra một xung kích thích RF quay quanh trục z có tần số quay bằng với tần số quay của proton, từ trường B1 do xung RF tạo ra sẽ kéo vectơ M0 lệch khỏi trục z một góc lật a. Khi a = 90o, vectơ M0 bị lật hoàn toàn vào mặt phẳng xy, tạo thành độ từ hóa ngang.

Lúc này nếu tắt xung kích thích, môi trường chỉ còn chịu tác động của từ trường B0. Bối cảnh này tương tự như bối cảnh khởi đầu khi áp đặt từ trường B0 khi các proton đang có trục quay ngẫu nhiên định lại trục quay để rồi dần dần tạo ra độ từ hóa thực M0 hay độ từ hóa dọc. Nghĩa là sau khi tắt xung, dưới tác động của B0, độ từ hóa dọc dần dần được hình thành trở lại. Quá trình này gọi là quá trình hồi giãn dọc (longitudinal relaxation).

Đường cong của quá trình hồi giãn dọc

Trong quá trình hồi giãn dọc, vectơ từ hóa dọc lớn dần, lúc đầu thật nhanh nhưng về sau chậm dần cho đến độ lớn tối đa của nó là M0. Nghĩa là quá trình hồi giãn dọc xảy ra từ từ, ban đầu nhanh rồi dần dần chậm lại. Để cho dễ hình dung, người ta thường mô tả quá trình hồi giãn dọc bằng một đường cong cho thấy mức độ hồi phục của vectơ từ hóa dọc theo thời gian (Hình 3). Đường cong này cho thấy rằng hơn phân nửa độ lớn của vectơ từ hóa dọc được hồi phục rất nhanh, và người ta chọn thời gian hồi phục được khoảng 63% độ lớn của M0 làm thời gian tiêu biểu cho quá trình hồi phục này và gọi nó là thời gian hồi giãn dọc hay thời gian T1.

Hình 3 cũng cho thấy rằng khôi phục hoàn toàn M0 cần phải mất một khoảng thời gian gấp bốn đến năm lần thời gian T1. Do vậy trong thực tế, T1 được dùng thay cho thời gian hồi giãn dọc thực sự. Nếu dùng đơn vị đo là ms (mili-giây), thời gian T1 có giá trị từ khoảng 100 ms đến 3000 ms (3 giây).


Hình 3: Đường cong mô tả thời gian hồi giãn dọc cho thấy mối liên hệ giữa độ lớn của vectơ từ hóa dọc với thời gian. T1 là thời gian khôi phục được khoảng 63% độ lớn so với độ từ hóa thực M0. Sau khi mất thêm một khoảng thời gian T1 nữa (2T1), vectơ từ hóa dọc khôi phục được khoảng 86%. Thực tế, để khôi phục hoàn toàn độ từ hóa dọc phải mất một khoảng thời gian gấp bốn hoặc năm (4T1 hoặc 5T1) lần T1.

Thời gian T1 của một số mô điển hình

Với một từ trường có cường độ nhất định, mỗi mô trong cơ thể đều có một thời gian T1 khá đặc trưng. Trong các mô khác với mô mỡ, thời gian này thường phụ thuộc vào tỷ lệ giữa nước tự do và nước tù: nước tự do càng nhiều, thời gian T1 càng dài vì sự chuyển động của các phân tử nước làm cho các proton khó định hướng lại trục quay của mình dưới tác dụng của từ trường ngoài. Chẳng hạn với từ trường 1,5 Tesla, thời gian T1 của dịch não tủy (nhiều nước tự do) có thể xấp xỉ 2400 ms, trong khi đó thời gian T1 của các mô mềm như chất trắng và chất xám thường không quá 1000 ms. Hình 4 trình bày một bảng các giá trị thời gian T1 ghi nhận được của các mô khác nhau trong một nghiên cứu được tiến hành và so sánh giữa các từ trường 0,5 và 1,5 Tesla.

Ghi nhận tổng quát từ Hình 4 cho thấy rằng mô mỡ có thời gian T1 ngắn hơn hẳn so với các mô khác. Các mô mềm như gan, cơ do diện tích bề mặt nội bào lớn và cấu trúc mô nhất quán nên chúng có thể giữ chặt được nhiều phân tử nước và làm cho thời gian T1 của chúng cũng khá ngắn. Dịch não tủy với thành phần chủ yếu là nước tự do có T1 rất dài. Khi so sánh giữa chất xám và chất trắng, T1 của chất trắng ngắn hơn so với T1 của chất xám vì chất trắng chứa nhiều mỡ hơn chất xám.


Hình 4: Giá trị T1 tính bằng đơn vị ms (mili-giây) của các mô khác nhau được đo trong hai từ trường với cường độ là 0,5T và 1,5T. Bảng này cũng cho thấy rằng khi cường độ từ trường tăng, thời gian T1 cũng tăng theo tuy mức độ tăng không đồng đều.

Theo chiều hướng đó, các loại dịch tiết trong cơ thể như dịch khớp và mủ có thời gian T1 dài hơn so với T1 của các mô mềm. Tuy nhiên nếu so với các dịch thấm như dịch não tủy và nước tiểu chẳng hạn, thời gian T1 của loại dịch thấm thường dài hơn đáng kể so với các loại dịch tiết vì chúng chứa rất ít các phân tử lớn.
Cũng cần ghi nhận rằng nước tự do trong máu cũng khá lớn nên T1 của máu không ngắn hơn nhiều so với T1 của dịch não tủy. Tuy nhiên do ảnh hưởng mạnh của dòng chảy trong máu nên thời gian T1 của máu không còn được dùng làm một tham số đặc trưng như trong các cấu trúc tĩnh. Các phần tiếp theo sẽ bàn luận chi tiết về hiệu ứng dòng chảy (flow effect) và những ứng dụng của nó trong lĩnh vực cộng hưởng từ tim mạch.

Ảnh hưởng của cường độ từ trường

Như chúng ta đã thấy trong Hình 4, khi cường độ từ trường tăng lên, thời gian T1 của các mô có xu hướng tăng theo mặc dù không đồng đều. Mô mỡ tăng rất ít, chỉ từ 210 ms ở từ trường 0,5T thành 260 ms ở từ trường 1,5T (tỷ lệ 260/210 ≈ 1,2). Các mô mềm đều tăng đáng kể, chẳng hạn tỷ lệ tăng của mô cơ là 870/550 ≈ 1,6. Dịch não tủy, do có lượng nước cao nên có thời gian T1 thay đổi ít hơn (tỷ lệ 2400/1800 ≈ 1,3).

Khác biệt thời gian T1 giữa các mô

Trong các ứng dụng lâm sàng, khác biệt thời gian T1 giữa các mô thường được tận dụng để tạo hình cộng hưởng từ, cho phép chúng ta phân định rõ ranh giới giữa chúng. Nghĩa là trên hình cộng hưởng từ, các mô có thời gian T1 khác nhau càng lớn thì mức độ trắng đen giữa chúng càng rõ mà theo cách nói trong nghề “hình ảnh”, chúng có độ tương phản (contrast) cao. Hình cộng hưởng từ sử dụng mức độ khác biệt T1 của các mô để tạo độ tương phản được gọi là hình trọng T1 (T1-weighted image). Hình 5 là một hình trọng T1 cho thấy rõ cấu trúc các mô. Độ tương phản và hình trọng T1 sẽ được thảo luận trong trong các phần tiếp theo.


Hình 5: Một hình trọng T1 chụp cắt ngang qua đầu cho thấy rõ các cấu trúc của các mô (chất trắng, chất xám, mô mỡ…).

4. THỜI GIAN HỒI GIÃN NGANG T2

Bây giờ chúng ta quay lại tình huống đã được mô tả ngay từ đầu Phần 2.3 mà ở đó, ngay sau khi tắt xung kích thích, độ từ hóa ngang đang quay quanh trục z với tần số quay bằng tần số quay của các proton. Do hiện tượng cảm ứng điện từ, độ từ hóa ngang này tạo ra một tín hiệu cộng hưởng từ có thể đo được bằng các thiết bị ghi nhận thích hợp.

Bắt đầu từ lúc này, ngoài hiện tượng hồi giãn dọc xảy ra dưới tác dụng của từ trường ngoài B0 đã được thảo luận trong phần trước, hai hiện tượng nhân quả đáng chú ý nữa xảy ra song song với hiện tượng hồi giãn dọc là:

  1. Quá trình hồi giãn ngang, trong đó độ từ hóa ngang giảm dần độ lớn rồi mất hẳn.
  2. Do độ từ hóa ngang giảm dần, tín hiệu cộng hưởng từ cũng giảm dần rồi mất hẳn. Đây được gọi là hiện tượng suy giảm cảm ứng tự do FID (Hình 6).


Hình 6: Hiện tượng suy giảm cảm ứng tự do FID: theo thời gian, tín hiệu cộng hưởng từ lúc đầu có độ lớn bằng M0 giảm dần rồi mất hẳn.

Trong khi cơ chế của quá trình hồi giãn dọc là sự tương tác giữa proton với môi trường (tương tác spin-lattice) xảy ra dưới tác dụng của từ trường ngoài B0, cơ chế của quá trình hồi giãn ngang lại do tương tác giữa các proton với nhau (tương tác spin-spin). Lúc đầu các proton quay cùng pha, tạo ra một “sức mạnh tổng hợp” tối đa. Theo thời gian, các proton quay gần nhau có thể “đụng nhau” (tác động từ tính qua lại) khiến cho chúng dần lệch pha, làm giảm bớt đi sức mạnh tổng hợp của chúng. Nghĩa là vectơ từ hóa ngang lúc này nhỏ hơn so với lúc đầu.

Đường cong của quá trình hồi giãn ngang

Tương tự như quá trình hồi giãn dọc, người ta cũng mô tả quá trình hồi giãn ngang bằng một đường cong (Hình 7). Đường cong này cho thấy mức độ hồi giãn ngang, tức là sự suy giảm của vectơ từ hóa ngang, lúc đầu xảy ra khá nhanh rồi chậm dần. Ở đây, thời gian hồi giãn ngang hay thời gian T2 được tính là khoảng thời gian để vectơ từ hóa ngang giảm đi khoảng 63% độ lớn của mình hay nói cách khác, nó chỉ còn khoảng 37% độ lớn.

Chúng ta cần nhớ rằng tín hiệu cộng hưởng từ được tạo ra do độ từ hóa ngang, vốn là một từ trường, quay quanh trục z. Do vậy, suy giảm vectơ từ hóa ngang sẽ gây ra hiện tượng suy giảm cảm ứng tự do FID và thời gian T2 cũng chính là thời gian suy giảm tín hiệu cộng hưởng từ. Mặt khác, khi vectơ từ hóa dọc được khôi phục hoàn toàn thì vectơ từ hóa ngang chắc chắn không còn tồn tại nữa. Vì thế thời gian T1 có thể được xem như giá trị lớn nhất của T2 (trong trường hợp nước tinh khiết). Thực tế, T2 thường nhỏ hơn nhiều so với T1.


Hình 7: Đường cong mô tả thời gian hồi giãn ngang cho thấy mối liên hệ giữa độ lớn của vectơ từ hóa ngang với thời gian. T2 là thời gian vectơ từ hóa ngang chỉ còn khoảng 37% độ lớn so với độ lớn ban đầu M của nó. Nghĩa là hết một thời gian T2, nó đã mất khoảng 63% độ lớn của mình.

Thời gian T2 của một số mô điển hình

So với thời gian T1, thời gian T2 của các mô cơ thể thường ngắn hơn nhiều. Bảng được đưa ra trong Hình 8 minh họa cho chúng ta thấy điều này. Vì thời gian T2 biểu thị tốc độ suy giảm tín hiệu, giá trị T2 trong bảng đó giúp chúng ta so sánh độ suy giảm tín hiệu của các mô khác nhau. Với các mô có thời gian T2 ngắn, tín hiệu sẽ suy giảm nhanh và ngược lại với các mô có thời gian T2 dài, tín hiệu sẽ tồn tại lâu hơn. Do vậy theo bảng này, gan là mô có tín hiệu suy giảm nhanh nhất; dịch não tủy là mô có tín hiệu suy giảm lâu nhất.


Hình 8: Giá trị T2 tính theo đơn vị ms (mili-giây) của các mô khác nhau được đo trong một nghiên cứu giống như bảng của Hình 4. Nếu so sánh với giá trị T1 của bảng được cho trong Hình 4, giá trị T2 của các mô tương ứng nhỏ hơn nhiều, chỉ nằm trong khoảng từ vài chục đến vài trăm mili-giây.

Chúng ta cần nhớ rằng các mô trong cơ thể vốn phức tạp do chứa nhiều loại tế bào và các chất chuyển hóa khác nhau. Ở mức vi thể, chúng đều có những từ trường riêng rất nhỏ tác động qua lại, tạo ra một từ trường cục bộ không đồng nhất. Đây là một nguyên nhân làm cho các proton bị lệch pha ngoài nguyên nhân tương tác trực tiếp giữa các proton đã nêu.

Cụ thể, thời gian T2, tương tự như T1, cũng phụ thuộc vào tỷ lệ nước tự do/ nước tù trong các mô. Tuy nhiên sự phụ thuộc này lại có nguồn gốc từ sự không đồng nhất của từ trường cục bộ vừa nêu. Nước tự do có các phân tử chuyển động nhanh nên các proton của chúng ít bị tác động bởi tình trạng không đồng nhất của từ trường cục bộ xung quanh. Ngược lại nước tù với các phân tử bị giữ chặt bởi các phân tử lớn khiến chúng dễ bị tác động của từ trường cục bộ này, làm ngắn thời gian T2 của những mô có lượng nước tù nhiều. Vỏ xương là một thí dụ rõ nhất. Tín hiệu của vỏ xương hầu như không có do vỏ xương hầu như không có nước tự do. Nước có mặt trong vỏ xương đều là nước tù và bị giữ quá chặt khiến cho thời gian T2 của vỏ xương cực ngắn và hầu như trong mọi chuỗi xung đều không ghi nhận được tín hiệu cộng hưởng từ.

Như vậy, dù căn nguyên là gì đi chăng nữa, cả thời gian T1 và T2 đều phụ thuộc vào tỷ lệ giữa nước tự do và nước tù của các mô. Nhận xét vừa nêu cho phép chúng ta khẳng định rằng trong thực tế, các mô có thời gian T1 dài thường cũng có thời gian T2 dài và ngược lại.

Thời gian hồi giãn ngang T2*

Theo như đã mô tả trong phần trước, quá trình hồi giãn ngang xảy ra do sự tương tác giữa các proton, làm cho vectơ từ hóa ngang suy giảm dần trong thời gian T2. Tuy nhiên trong môi trường cơ thể, tín hiệu cộng hưởng từ thường mất khá nhanh chứ không tồn tại và kéo dài trong suốt thời gian T2, nghĩa là thời gian hồi giãn ngang thực tế này ngắn hơn so với thời gian hồi giãn ngang T2. Để phân biệt rõ ràng thời gian T2 thực tế với thời gian T2, người ta dùng khái niệm thời gian hồi giãn ngang T2*.

Lý do giải thích sự suy giảm nhanh chóng tín hiệu cộng hưởng từ này được quy cho các nguyên nhân đã dẫn đến tình trạng không đồng nhất của từ trường cục bộ và độ xê dịch hóa học vốn có giữa các proton của mỡ và của nước. Tính không đồng nhất của từ trường cục bộ, xét ở một góc độ nào đó, là một nguyên nhân vốn có vì như đã giải thích trong phần trước, các mô cơ thể có rất nhiều chất với những từ trường khác nhau. Ngoài ra, các chất thuận từ được đưa từ ngoài vào (chẳng hạn như các thuốc tương phản từ) hay được tạo ra trong một quá trình bệnh lý cũng là một nguyên nhân gây ra tính không đồng nhất của từ trường cục bộ.

Cũng cần nhấn mạnh rằng thuật ngữ T2 được dùng với ý nghĩa thông thường là thời gian hồi giãn ngang biểu thị một đặc trưng vốn có của mỗi mô cơ thể. Trong trường hợp cần nói đến ảnh hưởng của những nguyên nhân khác, chẳng hạn ảnh hưởng của tình trạng không đồng nhất của từ trường cục bộ hoặc do độ xê dịch hóa học, người ta dùng T2*. Điều này có nghĩa là T2* được dùng thay cho T2 trong những trường hợp đặc biệt với những mục đích đặc biệt.

Ảnh hưởng của độ xê dịch hóa học

Như chúng ta đã biết từ Phần 1, độ xê dịch hóa học là sự khác biệt về tần số quay giữa các proton ở những phân tử khác nhau. Với những kỹ thuật cộng hưởng từ hiện có, proton của nước và của mỡ là hai nguồn quan trọng nhất tạo ra tín hiệu cộng hưởng từ.

Trước tiên, bản thân mô mỡ chứa nhiều loại phân tử với những độ xê dịch hóa học khác nhau, mặc dù nguồn tín hiệu quan trọng nhất của mô mỡ là các proton CH2 bão hòa trong các phân tử triglyceride.

Thứ hai, proton của nước có tần số quay hơi nhanh hơn so với proton của CH2. Vì thế mặc dù lúc đầu khi vừa tắt xung kích thích, các proton của nước và của CH2 đều quay cùng pha nhưng theo thời gian, do ảnh hưởng của độ xê dịch hóa học, chúng dần lệch pha nhau cho đến thời điểm pha của chúng chênh lệch nhau 180o (nghịch pha). Lúc này tín hiệu hoàn toàn bị biến mất. Thế nhưng vì proton của nước vẫn quay nhanh hơn proton của CH2 nên mất một khoảng thời gian bằng như thế nữa, proton của nước và của CH2 sẽ có pha chênh nhau 360o. Tại thời điểm này, chúng lại cùng pha và tín hiệu lúc này mạnh trở lại. Đây là cơ sở của kỹ thuật Dixon thực hiện xóa tín hiệu của mỡ sẽ được phân tích trong các phần tiếp theo.

Như vậy, độ xê dịch hóa học không hoàn toàn làm mất hẳn tín hiệu cộng hưởng từ: nó chỉ làm thay đổi tín hiệu cộng hưởng từ theo một quy luật nhất định. Quy luật này sẽ được sử dụng trong nhiều trường hợp để gợi ý hoặc khẳng định chẩn đoán.

Ảnh hưởng của các chất thuận từ

Chúng ta đã biết rằng chất thuận từ là nhóm chất có khả năng bị từ hóa dưới tác động của một từ trường. Khi đó chúng trở thành một nam châm yếu và từ trường của chúng hợp sức với từ trường hiện có, làm cho từ trường chung mạnh hơn, mặc dù so với tác động của nhóm chất sắt từ, sức mạnh bổ sung này khá nhỏ.

Tuy nhiên ở mức vi thể, chất thuận từ có thể làm mất tính đồng nhất của từ trường cục bộ, một nguyên nhân quan trọng làm suy giảm nhanh tín hiệu cộng hưởng từ, khiến cho thời gian T2* vốn đã ngắn lại càng ngắn hơn. Tuy nhiên ảnh hưởng này phụ thuộc vào mức độ tiếp xúc giữa chất thuận từ với các phân tử nước. Một chất thuận từ có thể có rất ít tác động đối với mô nếu nó bao khuất không nằm sát với các phân tử nước.

Tùy theo hàm lượng và mức độ thuận từ, một chất thuận từ khi có tác động của một từ trường ngoài có thể làm tăng cường độ của từ trường cục bộ. Những chất thuận từ đó đôi khi được gọi bằng thuật ngữ chất nhạy từ (superparamagnetic) và được định nghĩa là những chất có khả năng từ hóa giữa mức chất sắt từ và chất thuận từ. Chẳng hạn các loại thuốc tương phản từ khi được đưa vào bằng đường tĩnh mạch đều nằm trong nhóm chất nhạy từ. Với một nồng độ cao và tiếp xúc đều khắp với các phân tử nước, các loại thuốc này làm tăng cường độ từ trường cục bộ, kết quả là cả thời gian T1 và T2 đều ngắn đi.

Một số quá trình bệnh lý có thể sản sinh ra các chất thuận từ. Thí dụ như trong quá trình phân hủy cục máu đông, một sản phẩm phân hủy hemoglobin của hồng cầu là chất methemoglobin, vốn là một chất thuận từ, có thể làm thay đổi tín hiệu của vùng bị xuất huyết. Trong giai đoạn bán cấp sớm, chất methemoglobin được tạo ra nhưng hồng cầu chưa bị vỡ nên ảnh hưởng của nó không rõ ràng. Tuy nhiên ở giai đoạn bán cấp muộn khi hồng cầu đã vỡ, methemoglobin làm thay đổi rõ rệt tín hiệu cộng hưởng từ.

Khác biệt thời gian T2 giữa các mô

Tương tự như T1, khác biệt thời gian T2 giữa các mô cũng được tận dụng để tạo sự tương phản giữa các mô trên hình cộng hưởng từ. Một hình cộng hưởng từ có sử dụng sự khác biệt thời gian T2 giữa các mô được gọi là hình trọng T2 (T2-weighted image): khác biệt T2 của hai mô càng lớn, mức độ trắng đen giữa chúng trên ảnh trọng T2 càng rõ. Hình 9 trình bày một hình trọng T2 của não cho thấy cấu trúc các mô không rõ ràng lắm. Tuy nhiên tín hiệu của dịch não tủy rất mạnh, thể hiện bằng hai vùng trắng tương ứng với hai não thất bên và các đường trắng len giữa các hồi não. Độ tương phản và hình trọng T2 cũng sẽ được thảo luận trong các phần tiếp theo.

5. NHỮNG ĐIỂM CẦN GHI NHỚ

Đến đây chúng ta đã nghiên cứu xong những đặc điểm quan trọng của hiện tượng cộng hưởng từ trên các mô cơ thể. Chúng là cơ sở để trong những phần sau, với nhiều kỹ thuật cực kỳ độc đáo, chúng ta có thể “nhìn thấu” vào trong cơ thể sống bằng cách tạo ra những hình ảnh giống như thể chúng ta đang cắt cơ thể sống ra thành từng lớp để biết được chúng đang “sống” như thế nào. Những khái niệm quan trọng và đáng chú ý trong phần này được tóm tắt như dưới đây:


Hình 9: Một hình trọng T2 chụp cắt ngang qua đầu ngang mức não thất bên cho thấy rõ hình dạng của hai não thất bên nhờ chứa nhiều dịch não tủy. Phân biệt giữa chất xám và chất trắng không được rõ ràng.

  • Hình ảnh cộng hưởng từ được tạo thành từ hai nguồn tín hiệu quan trọng của cơ thể là nước và mỡ. Các proton của nước có tần số quay nhanh hơn chút ít so với tần số quay của các proton trong mỡ. Khác biệt này thường được gọi là độ xê dịch hóa học.
  • Nước là thành phần chủ yếu có mặt khắp nơi trong cơ thể. Về mặt tín hiệu cộng hưởng từ, chúng ta chỉ phân biệt hai loại nước trong cơ thể: nước tù và nước tự do.
  • Nước tù là phần nước nằm gần các phân tử lớn. Những phân tử nước ở tình trạng này bị các đại phân tử hút chặt nên chúng chuyển động rất ít, do vậy chúng dễ bị tác động của từ trường.
  • Ngược lại, nước tự do chuyển động rất nhanh vì chúng ở xa các đại phân tử. Nhờ tốc độ chuyển động như thế, nước tự do bị tác động của từ trường chậm hơn nước tù.
  • Quá trình hồi giãn dọc xảy ra do sự tương tác giữa proton với môi trường dưới tác dụng của từ trường ngoài. Thời gian hồi giãn dọc còn được gọi là T1.
  • Quá trình hồi giãn ngang và hiện tượng suy giảm cảm ứng tự do FID là hai hiện tượng nhân quả xảy ra song song với quá trình hồi giãn dọc. Thời gian hồi giãn ngang còn được gọi là T2 và thường ngắn hơn nhiều so với T1.
  • Tín hiệu cộng hưởng từ của mô thường suy giảm nhanh hơn so với thời gian T2 của nó. Nguyên nhân của nó được quy cho tình trạng không đồng nhất của từ trường cục bộ và độ xê dịch hóa học của các mô. Khi đó, T2 được gọi là T2*.
  • Tỷ lệ giữa nước tự do và nước tù là một dấu chỉ quan trọng cho tính chất cộng hưởng từ của mô. Các mô mềm có lượng nước tù nhiều hơn nên thời gian T1 và T2 thường ngắn. Các loại dịch tiết có lượng nước tự do nhiều hơn nên T1 và T2 dài hơn. Tuy nhiên các loại dịch thấm luôn có T1 và T2 dài nhất vì có lượng nước tự do nhiều nhất.
  • Khác biệt thời gian hồi giãn giữa các mô có thể được dùng để phân định cấu trúc của chúng trên hình cộng hưởng từ. Một hình dùng T1 để phân định cấu trúc của các mô được gọi là hình trọng T1. Tương tự, một hình dùng T2 để phân định cấu trúc của các mô được gọi là hình trọng T2.

Tham khảo: Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 2, NXB ĐHQG TPHCM, Trang 19-34.