Lưu trữ cho từ khóa: Cộng hưởng từ

PHẦN 9: NHÌN LẠI CÁC NGUYÊN LÝ TƯƠNG PHẢN TRONG CỘNG HƯỞNG TỪ

Sau khi đã tìm hiểu các nguyên lý và kỹ thuật chụp cộng hưởng từ quan trọng nhất, trong phần này chúng ta sẽ xem xét lại và tổng kết chúng từ một góc độ có tính thực tiễn hơn, góc độ các nguyên lý tương phản. Ngoài ba nguyên lý tương phản đã được phân tích trong phần 3, chúng ta cũng bổ sung nguyên lý tương phản trọng dòng chảy đã được phân tích qua các kỹ thuật chụp tim mạch trong Phần 8, đồng thời thảo luận thêm hai nguyên lý tương phản vốn là cơ sở cho lĩnh vực cộng hưởng từ chức năng (functional MRI): nguyên lý trọng khuếch tán và nguyên lý trọng tưới máu. Thứ tự tổng kết được thực hiện như sau:

  • Nguyên lý trọng T1
  • Nguyên lý trọng T2
  • Nguyên lý trọng đậm độ proton
  • Nguyên lý trọng dòng chảy
  • Nguyên lý trọng khuếch tán
  • Nguyên lý trọng tưới máu

Cũng cần nhấn mạnh rằng ở Phần 3, các nguyên lý tương phản được thảo luận trên cơ sở của chuỗi xung điểm vang spin với các nguyên tắc: hình trọng T1 có TR và TE đều ngắn, hình trọng T2 có TR và TE đều dài, còn hình trọng đậm độ proton có TR dài và TE ngắn. Thời gian cụ thể gọi là dài hoặc ngắn của TR và TE được nêu ra ở Phần 3 thật sự không còn đúng đối với nhiều kỹ thuật đã bàn luận trong những phần vừa qua. Do vậy hiểu biết rõ cơ chế tác động của các xung và các thang từ trong mỗi chuỗi xung sẽ giúp chúng ta hiểu vì sao với những tham số nhất định, một chuỗi xung sẽ cho ra hình trọng T1 hoặc T2.

1. NGUYÊN LÝ TRỌNG T1

Nói tổng quát, một hình trọng T1 có thể có được từ hai chuỗi xung căn bản: chuỗi xung điểm vang spin (chuẩn) và chuỗi xung điểm vang thang từ có nhiễu phá. Các xung đặc hiệu, nhất là các xung xóa mỡ như xung đảo nghịch ngắn (short TI) hay xung bão hòa mỡ cũng có thể được sử dụng kèm với hai chuỗi xung căn bản để tạo ra kết quả mong muốn.

Chuỗi xung điểm vang spin SE

Cho đến nay đây vẫn là chuỗi xung kinh điển để tạo ra hình ảnh trọng T1 (Hình 1), nhất là đối với các hệ thống chụp ảnh có phần cứng hạn chế. Thời gian TR (ngắn) vào khoảng 600 ms còn thời gian TE (ngắn) vào khoảng 20 ms. Góc lật dĩ nhiên là 90o. Cần nhớ rằng do hiện tượng suy giảm cảm ứng tự do FID, tín hiệu sẽ ngày càng giảm dần, và vì vậy thời gian TE càng ngắn, chất lượng hình ảnh càng tốt.


Hình 1:
Các hình trọng T1 với chuỗi xung điểm vang spin. (a) Hình cắt ngang não cho thấy dịch não tủy trong não thất bên (mũi tên) có tín hiệu thấp. (b) Hình cắt dọc đứng qua khớp gối cho thấy mô mỡ dưới da và mỡ trong tủy xương có tín hiệu cao. Sụn chêm có viền sáng nhưng có tín hiệu thấp bên trong (mũi tên).

Chuỗi xung đảo nghịch IR

Theo cách hiểu thông thường, chuỗi xung đảo nghịch thật ra chỉ là một biến thể của chuỗi xung điểm vang spin, trong đó người ta dùng thêm một xung đảo nghịch 180o trước khi phát xung kích thích một khoảng thời gian TI. Nếu thời đảo TI được chọn khá ngắn, gần bằng với thời gian T1 của mỡ, chuỗi xung khi đó được gọi là chuỗi xung STIR (short TI inversion recovery) mà như chúng ta đã biết nó có tác dụng xóa mỡ.

Về phương diện tương phản, hình ảnh thu được từ chuỗi xung này là một hình trọng T1 ngược chứ thật sự không phải hình trọng T1. Nghĩa là trên hình này, mô có T1 ngắn lại có tín hiệu thấp (màu đen) còn mô có T1 dài lại có tín hiệu cao (màu trắng). Kết quả “ngược đời” này xuất phát từ chỗ mô có T1 dài khi bị đảo ngược 180o sẽ khôi phục chậm hơn. Do vậy vào lúc phát xung kích thích, giá trị tuyệt đối của độ từ hóa dọc của mô có T1 dài vẫn còn lớn (mặc dù có giá trị âm) trong khi mô có T1 ngắn đã khôi phục gần như trở về zero. Khi bị lật ngang bằng xung kích thích, mô có T1 dài sẽ có độ từ hóa ngang lớn hơn, cho ra tín hiệu cao hơn.

Khi chụp ở não, chuỗi xung STIR thường được in “âm bản” khiến cho vùng trắng được in thành đen và ngược lại. Nghĩa là khi đó hình trọng T1 ngược trở thành hình trọng T1 thực sự (Hình 2).


Hình 2:
Hình trọng T1 chụp bằng chuỗi xung STIR và in âm bản phân định rất rõ cấu trúc chất xám và chất trắng. Để ý vùng nền của không khí xung quanh đầu bệnh nhân lúc chụp trên hình này có màu xám trắng, trong khi đó trên các phim thông thường đều có màu đen.

Chuỗi xung điểm vang thang từ có nhiễu phá GRE

Các chuỗi xung điểm vang thang từ thường dùng thời gian TR ngắn kèm với góc lật nhỏ hơn 90o. Khi TR ngắn hơn T2 của một mô nào đó trong vùng can chụp thì tại thời điểm phát xung kích thích tiếp theo, độ từ hóa ngang vẫn còn tồn tại. Độ từ hóa ngang còn dư lại làm tăng đặc thù trọng T2 và làm giảm đặc thù trọng T1 của hình.

Để bảo đảm chất lượng của một hình trọng T1, trong chuỗi xung điểm vang thang từ có nhiễu phá (spoiled gradient echo), người ta phải nhiễu phá độ từ hóa ngang còn dư lại này bằng một xung hoặc một thang từ nhiễu phá. Khi đó ở lần kích thích tiếp theo, độ từ hóa ngang bị mất hoàn toàn hoặc chỉ còn rất ít. Nếu chọn lựa các tham số TR, TE và góc lật một cách thích hợp, chúng ta có thể thu được một hình trọng T1 rất đặc thù (Hình 3).


Hình 3:
Hình trọng T1 được thực hiện trong thì động mạch sau khi tiêm Gado cho thấy nhiều tổn thương di căn của gan (mũi tên).

Chuỗi xung điểm vang thang từ có nhiễu phá có thể được thực hiện kèm với kỹ thuật chụp đa lớp cắt hoặc chụp ba chiều. Mỗi kỹ thuật này đều có những ưu điểm riêng vốn có của chúng, và khi bổ túc vào chuỗi xung này chúng làm tăng hiệu quả của chuỗi xung lên rất nhiều.

Cũng cần nhắc lại ở đây rằng các tên thương mại khá phổ biến của chuỗi xung điểm vang thang từ có nhiễu phá là FLASH (hãng Siemens), spoiled GRASS hay SPRG (hãng GE).

2. NGUYÊN LÝ TRỌNG T2

So với các hình trọng T1 thường chỉ được tạo ra bằng cách dùng các chuỗi xung điểm vang spin và điểm vang thang từ có nhiễu phá, các hình trọng T2 có thể được tạo ra bằng nhiều kỹ thuật hơn, mặc dù một số kỹ thuật thực sự cho hình trọng T2/T1 chứ không đơn thuần trọng T2. Một hình trọng T2/T1 là hình có tín hiệu cao đối với các mô có T2 dài hoặc có T1 ngắn.

Chuỗi xung điểm vang spin SE

Sử dụng chuỗi xung điểm vang spin để tạo ra một hình trọng T2 là một kỹ thuật kinh điển. Với thời gian TR dài và TE dài, tín hiệu của các mô có T2 ngắn hầu như đã mất hết do hiện tượng suy giảm cảm ứng tự do FID, chỉ còn lại tín hiệu của các mô có T2 dài, tạo ra một hình có độ tương phản dựa vào đặc thù thời gian T2 của các mô.


Hình 4:
Hình trọng T2 chụp bằng chuỗi xung điểm vang spin cho não (bên trái) và cột sống (bên phải) cho thấy dịch não tủy có tín hiệu cao (màu trắng) vì có thời gian T2 rất dài.

Chuỗi xung điểm vang thang từ GRE

Chúng ta đã biết rằng chuỗi xung điểm vang thang từ không dùng xung tái lập 180o. Thay vì thế nó sử dụng một thùy hồi pha để điều chỉnh tình trạng lệch pha do thùy khử pha gây ra. Ở điểm này, thùy hồi pha có tác dụng kém hơn xung tái lập 180o. Nó không có khả năng điều chỉnh tình trạng lệch pha gây ra do tình trạng không đồng nhất của từ trường cục bộ hoặc do độ xê dịch hóa học. Điều này nói lên rằng chuỗi xung điểm vang thang từ dễ bị ảnh hưởng của tình trạng không đồng nhất của từ trường cục bộ hoặc độ xê dịch hóa học, dẫn đến tình trạng mất tín hiệu cục bộ.

Khi có xuất huyết hoặc vôi hóa, tính chất thuận từ của sắt (từ các sản phẩm của quá trình phân hủy hồng cầu trong khối máu xuất huyết) và canxi sẽ làm cho từ trường cục bộ trở nên kém đồng nhất. Vận dụng đặc điểm nhạy với tình trạng không đồng nhất của từ trường cục bộ của chuỗi xung điểm vang thang từ, người ta thường dùng nó để xác định chẩn đoán (Hình 5).

Cũng cần nhắc lại rằng tính không đồng nhất của từ trường và độ xê dịch hóa học vốn luôn hiện diện trong mọi mô. Chúng làm cho thời gian suy giảm tín hiệu FID thực tế (thời gian T2*) ngắn hơn thời gian suy giảm lý thuyết (thời gian T2). Chuỗi xung điểm vang thang từ vì thế được xem là chuỗi xung tạo ra hình trọng T2* thay vì trọng T2. Vì vậy có đôi khi người ta cũng gọi chuỗi xung điểm vang thang từ là chuỗi xung T2* (các tác giả Pháp).


Hìn
h 5: Hình trọng T2 chụp bằng chuỗi xung điểm vang spin nhanh (bên trái) cho thấy nhiều tổn thương xuất huyết (mũi tên). Thế nhưng khi chụp bằng chuỗi xung điểm vang thang từ (bên phải), người ta phát hiện ra khá nhiều tổn thương nhỏ (đầu mũi tên).

Chuỗi xung điểm vang thang từ không nhiễu phá

Các chuỗi xung điểm vang thang từ không nhiễu phá nói chung đều sinh ra các hình trọng T2/T1. Do thời gian TR ngắn, mô có T1 ngắn khôi phục độ từ hóa dọc được nhiều hơn; do không nhiễu phá độ từ hóa ngang còn dư, mô có T2 dài có độ từ hóa ngang lớn hơn. Cả mô có T1 ngắn lẫn mô có T2 dài như vậy đều có tín hiệu cao trên hình, cho ra hình trọng T2/T1.

Thực tế, thời gian T1 và T2 của các mô thường song hành với nhau, nghĩa là mô có T1 dài cũng có T2 dài và ngược lại. Vì vậy độ tương phản trên các hình trọng T2/T1 thường không rõ. Chẳng hạn mô gan có T1 ngắn nên sẽ có tín hiệu cao hơn đa số các tổn thương gan với T1 dài trên hình trọng T1; ngược lại các tổn thương gan thường có T2 cũng dài nên có tín hiệu cao hơn gan trên hình trọng T2. Thế nhưng trên hình trọng T2/T1, cả hai đều có tín hiệu cao, không có được một độ tương phản rõ rệt giữa chúng.

Các chuỗi xung đầu tiên loại này thường được gọi với tên thương mại là FISP (hãng Siemens) và GRASS (hãng GE). Gần đây hơn, chuỗi xung SSFP (Steady State Free Precession) được thiết kế với thời gian TR và TE cực ngắn (3 và 1 ms) có nhiều ứng dụng lâm sàng, đặc biệt đối với vùng bụng và tim mạch. Tên thương mại khá thông dụng của nó là trueFISP (Siemens).


Hình
6: Hình dọc trán chụp bằng chuỗi xung trueFISP thấy rất rõ một khối u lớn nằm ở vùng hố thận phải (mũi tên lớn) được chẩn đoán là carcinoma thận phải.

Chuỗi xung điểm vang spin nhanh FSE

Từ Phần 6 chúng ta đã biết rằng các chuỗi xung nhiều điểm vang cho ra hình trọng T2, đặc biệt khi thời vang hiệu dụng TEef dài. Đối với các chuỗi xung một phát (single-shot), toàn bộ các hàng trong k-không gian đều được lấy mẫu qua một lần phát xung, do vậy không có TR hoặc có thể xem TR dài vô tận. Đối với các chuỗi xung nhiều phát (multishot), mỗi thời khoảng TR sẽ ghi nhận tín hiệu cho nhiều hàng trong k-không gian, mỗi hàng được lấy mẫu từ một điểm vang trong xâu điểm vang.

Trong trường hợp thông thường, hiện nay người ta có xu hướng thay chuỗi xung SE chụp hình trọng T2 bằng chuỗi xung chụp nhanh nhiều phát. Hiệu quả của chuỗi xung chụp nhanh rõ ràng là hơn hẳn dù độ tương phản và chất lượng hình nói chung có giảm bớt một ít.

Nếu phải chụp thật nhanh, người ta có thể dùng chuỗi xung một phát SSFSE (single-shot fast spin echo) mà tên thương mại rất phổ biến của nó là HASTE (half-Fourier acquisition single shot turbo spin echo). Các chuỗi xung có tên turbo đều là chuỗi xung nhanh của của hãng Siemens: turboSE, turbo- FLASH, turboGSE, turboIR. Như tên gọi của nó cho biết, HASTE sử dụng một chiến lược điền dữ liệu vào k-không gian gọi là kỹ thuật nửa-Fourier (half-Fourier). Kỹ thuật này tận dụng tính đối xứng của k-không gian bằng cách thay vì điền hết mọi hàng trong đó, nó chỉ thực hiện điền hơn một nửa số hàng cần thiết; số hàng còn lại sẽ được máy tính “nội suy” và lấp đầy vào. Nếu chọn thời vang hiệu dụng TEef thật dài, hình thu được hầu như chỉ có tín hiệu của nước. Đặc điểm này được sử dụng để chụp đường mật và ống tụy (Hình 7) và gọi là mật tụy đồ cộng hưởng MRCP (MR Cholangiopancreatography).


Hìn
h 7: Hình MRCP chụp bằng kỹ thuật HASTE cho thấy rõ túi mật (mũi tên rỗng), ống gan trái, ống mật chủ, tá tràng (mũi tên cong), ống tụy (mũi tên ngắn). Ống gan phải bị che khuất chỉ thấy một phần (mũi tên dài).

Đặc biệt hơn, chuỗi xung điểm vang spin nhanh có thể sử dụng thêm một xung đảo nghịch 180o trước khi phát xung kích thích, cho phép xóa mỡ (chuỗi xung STIR) hoặc xóa dịch (chuỗi xung FLAIR). Chúng ta cần nhớ rằng chuỗi xung FLAIR vốn đã tạo ra hình trọng T2 khi được chụp bằng kỹ thuật thông thường (dùng điểm vang spin), trong khi đó chuỗi STIR thực chất cho ra hình trọng T1 ngược. Khi sử dụng chuỗi xung STIR với kỹ thuật chụp hình nhanh (điểm vang spin nhanh) và với thời vang TEef đủ dài, chuỗi xung STIR nhanh này cho ra hình trọng T2 (Hình 8) mặc dù vẫn biểu hiện một phần đặc tính trọng T1 vốn có của mình.

Chuỗi xung điểm vang đồng phẳng

Giống như kỹ thuật điểm vang spin nhanh, các chuỗi xung điểm vang đồng phẳng EPI về cơ bản cũng tạo ra các hình trọng T2. Khác biệt chủ yếu của chuỗi xung điểm vang đồng phẳng so với chuỗi xung điểm vang spin nhanh là điểm vang được tạo ra trong chuỗi xung đồng phẳng là điểm vang thang từ, không phải điểm vang spin. Tuy nhiên người ta cũng tìm cách phối hợp chuỗi xung điểm vang đồng phẳng EPI với điểm vang spin SE bằng cách thực hiện một xung tái lập 180o vào thời điểm TEef/2. Nhờ xung tái lập này, hình ảnh thu được ít bị ảnh hưởng bởi tình trạng không đồng nhất của từ trường cục bộ và độ xê dịch hóa học vốn là một đặc trưng của các chuỗi xung điểm vang thang từ.


Hình
8: Hình chụp đứng dọc khớp gối với chuỗi xung STIR nhanh (TR/TEef/ TI, 5000/30/150) xóa rất tốt mỡ của tủy xương và cho thấy rõ tụ dịch trên xương bánh chè (mũi tên) bằng tín hiệu rất cao.

3. NGUYÊN LÝ TRỌNG ĐẬM ĐỘ PROTON

Hiện tại, ngoài hai chuyên khoa thần kinh và cơ xương khớp, các hình trọng đậm độ proton (proton density) rất ít được dùng. Kỹ thuật chủ yếu vẫn là chuỗi xung điểm vang spin kinh điển; một số trường hợp có thể dùng kỹ thuật điểm vang spin nhanh. Trong thực tế, hình trọng đậm độ proton thường được chụp chung với hình trọng T2 bằng kỹ thuật điểm vang kép (double-echo hay dual-echo), mỗi điểm vang tạo ra một hình. Với kỹ thuật này, sau mỗi xung kích thích 90o, người ta phát hai xung tái lập 180o tại hai thời điểm khác nhau trong khoảng thời gian TR sao cho điểm vang thứ nhất có thời vang TE khá ngắn dành cho hình trọng đậm độ proton còn điểm vang thứ hai có thời vang TE khá dài dành cho hình trọng T2.

Trong thực tế lâm sàng, hình trọng đậm độ proton rất có giá trị khi cần đánh giá các cấu trúc có tín hiệu thấp như mô sợi. Đặc biệt, hình trọng đậm độ proton được xem là hình có độ nhạy tốt nhất đối với các trường hợp rách sụn chêm (Hình 9).

4. NGUYÊN LÝ TRỌNG DÒNG CHẢY

Nguyên lý và kỹ thuật chụp dòng chảy đã được chúng ta tìm hiểu khá chi tiết trong Phần 8. Tuy nhiên để cho độc giả có được một cái nhìn toàn cảnh từ góc độ nguyên lý tương phản cộng hưởng từ, chúng ta sẽ lược qua một số điểm mấu chốt có liên quan đến tín hiệu của các dòng chảy.


Hình 9:
Hình đứng dọc trọng đậm độ proton cho thấy rất rõ một đường rách ở sừng sau của sụn chêm trong (mũi tên) kéo dài từ mặt khớp trên đến mặt khớp dưới.

Độ tương phản do thuốc

Các thuốc tương phản từ đa số đều dùng theo đường tiêm tĩnh mạch với tác dụng chủ yếu là làm giảm rõ rệt thời gian T1 và T2 của dòng máu và của các mô “bắt thuốc”, dù rằng mức độ có khác nhau tùy theo từng loại thuốc.

Tác dụng làm giảm thời gian T1 biểu hiện ra khi được chụp bằng các chuỗi xung “trọng T1”, chẳng hạn với chuỗi xung điểm vang spin có cả TR và TE đều ngắn, khi đó mạch máu và các mô bắt thuốc sẽ có tín hiệu cao. Tác dụng làm giảm thời gian T2 biểu hiện bằng tình trạng giảm tín hiệu khi được chụp bằng các chuỗi xung “trọng T2”. Tác dụng này trong thực tế không dùng để đánh giá mạch máu mà chỉ được sử dụng để làm giảm T2 của các mô, cho phép chụp các hình trọng T2 hoặc T2*. Thí dụ các chất SPIO có thể được các tế bào Kuffer trong gan bắt giữ, làm giảm tín hiệu của nhu mô gan so với tổn thương và các mô xung quanh (Hình 10).

Về mặt huyết động học, nói chung trong khoảng thời gian 30 giây sau tiêm, thuốc chủ yếu tồn tại trong động mạch (thì động mạch). Trong khoảng 30 giây tiếp theo, thuốc lan tỏa qua mao mạch rồi đến tĩnh mạch (thì hồ máu). Sau thời điểm 60 giây, thuốc đã ngấm qua thành mao mạch (ngoại trừ mao mạch hệ thần kinh và tinh hoàn) để vào khoang gian bào nhưng nhìn chung vẫn tiếp tục tồn tại trong hồ máu (thì ngoại bào). Từ thời gian này trở về sau, các thuốc đặc hiệu với tế bào (tế bào gan, tế bào hệ lưới nội mô, vân vân) mới có thể vào được nội bào và có tác dụng.


Hình
10: (a) Hình cắt ngang bụng trọng T2 không tiêm thuốc cho thấy một tổn thương rất lớn và các tổn thương nhỏ không rõ bờ ở gan. (b) Sau khi tiêm ferumoxide (AMI-25), trên hình trọng T2 tín hiệu của nhu mô gan giảm rõ, làm tăng độ tương phản giữa nhu mô và các tổn thương.

Do những đặc điểm về huyết động học nêu trên, thời điểm chụp sau khi tiêm thuốc có ảnh hưởng rất lớn đến khả năng làm thay đổi thời gian T1 và T2 của thuốc tương phản. Nếu muốn đánh giá tình trạng động mạch, chúng ta cần chụp ở thì sớm (thì động mạch), tốt nhất không nên để quá 20 giây sau tiêm. Khi để trễ hơn, chúng ta có thể thấy cả tĩnh mạch (thì hồ máu). Đánh giá khả năng “bắt thuốc” của mô cần thực hiện ở thì ngoại bào, tốt nhất sau tiêm 2 phút. Với các thuốc đặc hiệu tế bào, thời gian chụp có thể lâu hơn và kéo dài nhiều giờ. Thời điểm bắt đầu chụp có thể từ 10 đến 30 phút sau tiêm.

Trong trường hợp đặc biệt hơn, một số tổn thương có tính chất huyết động khá đặc thù, biểu hiện ở tốc độ và cách thức “bắt thuốc”, kể cả tốc độ và cách thức “xả thuốc”. Khi đó, một phương thức chụp “động” (dynamic) sẽ thích hợp hơn. Chẳng hạn để đánh giá một tổn thương nghi ngờ là hemangioma ở gan, người ta tiêm thuốc tương phản nhóm chelate gado rồi chụp các hình trọng T1 bằng chuỗi xung điểm vang thang từ: chụp một hình ngay trước khi tiêm rồi chụp lập lại các hình ở thì động mạch (khoảng 30 giây sau tiêm), thì hồ máu hay thì tĩnh mạch cửa (khoảng 30 giây nữa) và thì ngoại bào hay thì cân bằng (khoảng 2 đến 3 phút sau tiêm). Kỹ thuật chụp động này cho phép đánh giá tính chất “bắt thuốc” và “xả thuốc” của tổn thương (Hình 11).


Hình
11: Chuỗi hình chụp động trọng T1 đánh giá một tổn thương nghi ngờ hemangioma ở gan. (a) Chụp ngay trước tiêm (b-d) Các hình chụp động sau tiêm ở thì động mạch (b), thì tĩnh mạch cửa (c) và thì cân bằng (d).

Độ tương phản do hiệu ứng dòng chảy

Ngoài cách dùng thuốc để tạo ra độ tương phản, một cách làm có phần tương tự như dùng thuốc cản quang trong CT và X quang quy ước, cộng hưởng từ còn có thể sử dụng ngay sự chuyển động của dòng máu để có được một độ tương phản nhất định so với các mô đứng yên. Đặc biệt hơn, máu chảy trong lòng mạch không chỉ sáng tương tự như khi dùng thuốc tương phản mà còn có thể tối hơn so với các mô đứng yên. Hiệu ứng tạo ra hình ảnh máu tối là hiệu ứng trống dòng (flow void effect) trong khi đó hiệu ứng tạo ra hình ảnh máu sáng là hiệu ứng nội dòng (inflow effect).

Hiệu ứng trống dòng thường xảy ra khi chụp bằng chuỗi xung điểm vang spin (SE hoặc FSE) cho những dòng máu chảy chậm, với tín hiệu được ghi nhận tại một thời vang TE hoặc TEef khá dài sau xung kích thích. Trong tình huống này, máu bị lệch pha nhiều nhưng do hầu như đã chảy ra khỏi lớp cắt đang chụp nên không nhận được xung tái lập 180o, trong khi đó khối máu mới thay thế lại chưa nhận được xung kích thích. Kết quả là tại thời điểm đo tín hiệu TE hoặc thời điểm ghi nhận tín hiệu cho các hàng gần trung tâm của k-không gian (TEef), dòng máu chảy có tín hiệu rất thấp, cho ra hình ảnh máu đen khiến chúng ta có cảm giác như trong lòng mạch không có gì (trống dòng).

Hiệu ứng nội dòng xảy ra khi một khối máu mới chưa bị bão hòa chảy vào vùng đang được chụp hình. Ở thời điểm này, các mô đứng yên xung quanh đã nhận được nhiều loại xung và thang từ khác nhau, dẫn đến tình trạng chúng bị bão hòa khá nhiều. Do vậy khi được kích thích ở lần tiếp theo, tín hiệu của các mô đứng yên so với tín hiệu của khối máu mới sẽ thấp hơn. Nếu được chụp bằng một kỹ thuật thích hợp, thường là một chuỗi xung nhanh, dòng máu đang chảy sẽ có tín hiệu cao hơn hẳn so với mô đứng yên xung quanh (Hình 12).


Hìn
h 12: Hình minh họa cho hiệu ứng nội dòng.

Ngoài hiệu ứng nội dòng, người ta còn có thể dùng độ chênh lệch pha hay độ tương phản pha (phase contrast) để tạo ra hình ảnh máu sáng, cho phép đánh giá được cả tốc độ chảy của dòng máu. Muốn vậy, người ta cần chụp vùng đang khảo sát ở hai thời điểm khác nhau. Khi so sánh dữ liệu của hai thời điểm này, các mô đứng yên không có sự khác biệt về pha còn dòng máu chảy có một độ chênh lệch rõ rệt. Độ chênh lệch zero của các mô đứng yên hiển thị thành hình tối còn độ chênh lệch khác zero của dòng máu đang chảy hiển thị thành hình sáng.

5. NGUYÊN LÝ TRỌNG KHUẾCH TÁN

Ở góc độ triết học, chuyển động là một thuộc tính vốn có của sự vật. Ở góc độ sinh học, chuyển động biểu thị các hoạt động chức năng của cơ thể. Các quá trình sinh lý xảy ra trong cơ thể, từ mức độ đại thể như các hoạt động hít vào, thở ra của phổi hay hoạt động co bóp của tim đến các mức độ vi thể như các quá trình trao đổi chất ở tế bào đều những biểu hiện cụ thể của sự chuyển động.

Nhờ khả năng “nhạy cảm” với sự chuyển động, cộng hưởng từ đã được kỳ vọng như một phương tiện giúp chúng ta đánh giá được chức năng của các bộ phận, nghĩa là các quá trình hoạt động của chúng. Mặc dù đã được đặt ra từ lâu nhưng do những hạn chế về phần cứng và kỹ thuật, kỳ vọng này gần đây mới bắt đầu trở thành hiện thực, mở ra một lĩnh vực mới với tên gọi là chụp cộng hưởng từ chức năng fMRI (functional MRI). Trong phần này và phần tiếp theo, chúng ta sẽ rảo qua hai kỹ thuật cơ sở của chụp cộng hưởng từ chức năng, đó là kỹ thuật khuếch tán (diffusion) và kỹ thuật tưới máu (perfusion).

Hiện tượng khuếch tán

Chắc hẳn nhiều người trong chúng ta còn nhớ từ những năm học phổ thông rằng khi ở trạng thái lỏng (thể lỏng), các phân tử nước chuyển động không ngừng và hỗn loạn theo mọi hướng mà chúng ta gọi là chuyển động Brown. Theo thời gian, chúng có thể tản mác ra khắp môi trường. Nói một cách “hàn lâm” hơn, chúng ta bảo rằng chúng khuếch tán khắp nơi. Tốc độ khuếch tán phụ thuộc vào nhiều yếu tố của môi trường, đặc biệt là độ nhớt và nhiệt độ môi trường.

Để lượng hóa khái niệm khuếch tán, người ta sử dụng một con số gọi là h số khuếch n (diffusion coefficient) với đơn vị là diện tích/thời gian. Hệ số này cho biết diện tích mà một phân tử chất lỏng (ở đây là nước) có thể dịch chuyển (khuếch tán) trong một đơn vị thời gian. Trong thực tế, hệ số khuếch tán được tính bằng đơn vị cụ thể mm2/giây (mm2/sec). Thí dụ ở nhiệt độ 37oC, nước nguyên chất có hệ số khuếch tán là 0,003 mm2/sec.

Trong cơ thể, nước cũng khuếch tán khắp nơi, nghĩa là các phân tử nước cũng luôn di chuyển không ngừng và hỗn loạn theo mọi hướng bằng chuyển động Brown. Tuy nhiên chuyển động Brown của nước trong cơ thể bị hạn chế bởi các cấu trúc giải phẫu vi thể và các phân tử lớn có mặt trong mỗi mô. Khi này, thay vì dùng hệ số khuếch tán, người ta đưa ra khái niệm hệ số khuếch tán biểu kiến ADC (apparent diffusion coefficient). Hệ số ADC thay đổi tùy theo cấu trúc và tình trạng bệnh lý của mỗi mô. Mô có hệ số ADC càng lớn, khả năng khuếch tán của nước trong mô càng mạnh.

Tính dị hướng

Không giống như hiện tượng khuếch tán trong môi trường tự do, hiện tượng khuếch tán của nước ở các mô cơ thể không có tính đẳng hướng (isotropy) mà có tính dị hướng (anisotropy), nghĩa là chúng không khuếch tán giống nhau theo mọi hướng. Ở mô sợi hoặc các mô có mức độ tổ chức cao như gân, cơ, chất trắng, các phân tử lớn thường được sắp xếp theo một hướng nhất định, hạn chế khả năng khuếch tán của nước theo một hướng nào đó và làm cho nước “có khuynh hướng” khuếch tán theo một hướng khác nhiều hơn. Hệ số ADC do vậy vừa biểu thị tốc độ khuếch tán (độ lớn của hệ số) vừa biểu thị hướng khuếch tán theo ba chiều không gian x, y, z. Thông tin độ lớn của ADC được sử dụng để tạo ra một hình cộng hưởng từ có tên là bản đồ ADC (ADC map).

Ở não, người ta nhận thấy rằng hiện tượng khuếch tán có khuynh hướng xảy ra dọc theo hướng sợi trục của chất trắng dù rằng nguyên nhân đích xác của nó chưa được giải thích thấu đáo. Hình 13 minh họa khuynh hướng khuếch tán này.


Hình 13:
Các hình chụp ngang não với hệ số nhạy khuếch tán b = 1000 sec/mm2 với thang từ khuếch tán được áp dụng theo một trục. Theo chiều áp dụng của thang từ, bó sợi chất trắng dọc theo trục đó bị giảm tín hiệu (các mũi tên trong mỗi hình). (a) Thang từ được áp dụng theo trục x từ phải sang trái: thể chai có tín hiệu thấp. (b) Thang từ được áp dụng theo trục y từ trước ra sau: chất trắng vùng trán và đính giảm tín hiệu. (c) Thang từ được áp dụng theo trục z (đứng) từ trên xuống dưới: bó vỏ gai (bao trong) giảm tín hiệu.

Đặc tính cộng hưởng từ khuếch tán

Do chuyển động Brown của các phân tử nước, hiện tượng khuếch tán cũng là một nguyên nhân gây ra tình trạng lệch pha của các proton dưới tác dụng của các xung và các thang từ trong quá trình chụp hình. Tình trạng lệch pha này tỷ lệ thuận với cường độ và thời gian áp đặt thang từ. Thế nhưng các xung tái lập và các thùy hồi pha lại không điều chỉnh được nguyên nhân lệch pha do khuếch tán vì tình trạng hỗn loạn vốn có của chuyển động Brown.

Như vậy, ngoài nguyên nhân hồi giãn ngang trong khoảng thời gian T2 làm mất dần tín hiệu vốn tồn tại ngay cả khi không có các thang từ, nguyên nhân khuếch tán làm mất tín hiệu sẽ xảy ra khi có tác dụng của các thang từ. Nghĩa là lúc này, cường độ tín hiệu cần phải được tính theo hai tham số độc lập nhau: thời gian T2 và hệ số khuếch tán.

May mắn là trong những tình huống bình thường, các thang từ được sử dụng có cường độ nhỏ nên ảnh hưởng của hiện tượng khuếch tán đối với tình trạng mất tín hiệu có thể bỏ qua. Khi sử dụng các thang từ có cường độ mạnh được thiết kế để đánh giá hiện tượng khuếch tán, ảnh hưởng lệch pha do khuếch tán mới bộc lộ. Khi đó chúng ta cần đánh giá cả ảnh hưởng của T2 lẫn của hiện tượng khuếch tán.

Hệ số nhạy cảm khuếch tán

Để đánh giá được tình trạng khuếch tán của nước trong các mô cơ thể, người ta sử dụng các thang từ chuyên biệt gọi là thang từ khuếch tán (diffusion gradient). Mức độ nhạy cảm của các chuỗi xung đối với hiện tượng khuếch tán tùy thuộc vào cường độ và thời gian áp dụng thang từ khuếch tán. Khi đó, để điều chỉnh tác dụng của thang từ khuếch tán, người ta sử dụng hệ số nhạy khuếch tán b (diffusion sensitivity factor) được tính bằng đơn vị là giây/mm2 (sec/mm2). Giá trị b = 0 biểu thị chuỗi xung không nhạy khuếch tán, nghĩa là một chuỗi xung bình thường không nhằm đo đạc mức độ khuếch tán. Giá trị nhạy khuếch tán thường được sử dụng trong lâm sàng thay đổi từ 500 đến 1500 sec/mm2.

Kỹ thuật và các hình khuếch tán

Với những đặc tính đã nêu ở trên, hiện tượng khuếch tán trong cơ thể vừa là hiện tượng vật lý vừa là hiện tượng sinh lý. Quá trình này xảy ra ở mức phân tử với một tốc độ rất nhanh nên để có thể đo được hệ số ADC, người ta hay sử dụng các chuỗi xung điểm vang đồng phẳng EPI vì khả năng chụp nhanh của chúng. Bộ hình kinh điển để đánh giá hiện tượng khuếch tán gồm có ba nhóm: hình trọng T2, hình trọng khuếch tán DW và hình bản đồ ADC.

  1. Các hình trọng T2 (T2W) được chụp bằng chuỗi xung điểm vang đồng phẳng và được dùng làm cơ sở để so sánh và tạo lập hình bản đồ ADC. Trong bộ xung chụp hình khuếch tán, hình trọng T2 là hình được chụp với giá trị b = 0.

  2. Các hình trọng khuếch tán DW (diffusion-weighted) được thực hiện bằng cách trước tiên áp dụng thang từ khuếch tán theo mỗi trục x, y, z để có được ba hình trọng khuếch tán DW theo mỗi trục (Hình 13). Sau đó “nhân” tín hiệu của ba hình khuếch tán theo mỗi trục rồi lấy căn bậc ba của tích này, cho ra giá trị tín hiệu được dùng để tạo ra hình trọng khuếch tán DW (Hình 14). Hình trọng khuếch tán DW này chưa loại bỏ yếu tố làm mất tín hiệu do thời gian hồi giãn ngang T2 nên vẫn còn biểu hiện một phần đặc thù trọng T2. Chẳng hạn độ tương phản giữa chất xám chất trắng trên hình trọng khuếch tán DW chính là độ tương phản của chúng trên hình trọng T2.


Hìn
h 14: Hình trọng khuếch tán DW thu được từ ba hình trọng khuếch tán được chụp theo ba trục không gian đã được minh họa trong Hình 13.

  1. Các hình bản đồ ADC (ADC map) biểu thị độ lớn thuần túy của hệ số khuếch tán biểu kiến ADC, không có yếu tố tương phản trọng Chúng có thể được tính ra từ hình trọng khuếch tán DW và hình trọng T2 đã được chụp với giá trị b = 0. Với đặc điểm này, hình bản đồ ADC cho phép loại trừ các đặc thù trọng T2 “ăn theo” vốn có thể biểu hiện trên hình trọng khuếch tán DW.

Cho đến thời điểm hiện nay, các hình khuếch tán mặc dù đã khá thông dụng nhưng các ứng dụng chủ yếu của chúng vẫn là các ứng dụng trong lĩnh vực thần kinh. Trong trường hợp đột quỵ đến sớm (dưới 6 giờ) do nguyên nhân tắc mạch, chúng hầu như là nguồn thông tin duy nhất giúp chúng ta xác định xem vùng mô não bị thiếu máu hiện tại còn sống hay không. Thông tin này cho phép các bác sỹ lâm sàng có đủ cơ sở để đưa ra các quyết định điều trị thích hợp (Hình 15).

Cũng cần nói thêm rằng trong các hình trọng khuếch tán DW, vùng mô có hiện tượng khuếch tán kém sẽ có tín hiệu cao (trắng hơn). Ngược lại trong các hình bản đồ ADC vốn là hình biểu thị độ lớn của hệ số khuếch tán biểu kiến ADC, vùng mô kém khuếch tán (ADC nhỏ) sẽ có tín hiệu thấp (đen hơn).


Hình
15: Nhồi máu cấp đến sớm trước 6 giờ. (a) Hình trọng T2 chỉ thấy tăng nhẹ tín hiệu ở vùng thùy đảo bên trái. (b) Hình trọng khuếch tán DW cho thấy tăng tín hiệu điển hình của vùng cấp máu từ động mạch não giữa trái. (b) Hình bản đồ ADC có giảm tín hiệu rõ ở vùng này.

6. NGUYÊN LÝ CỘNG HƯỞNG TỪ TƯỚI MÁU

Mọi cơ quan trong cơ thể đều cần dưỡng khí và chất dinh dưỡng do máu cung cấp. Hoạt động chức năng càng nhiều, lượng máu đến nuôi càng lớn. Do vậy đánh giá và lượng hóa tình trạng tưới máu (perfusion) của một vùng cơ thể thông qua các chỉ số huyết động giúp chúng ta đánh giá được mức độ hoạt động chức năng đang thực sự xảy ra tại vùng cơ thể đó. Các chỉ số huyết động thường dùng là: thể tích máu trong mô (tissue blood volume), lượng máu chảy qua mô (tissue blood flow) hay thời gian quá cảnh (transit time).

Để thực hiện điều này, người ta cần dùng một chất đánh dấu nào đó có mặt trong máu và có thể nhận ra được bằng các kỹ thuật cộng hưởng từ. Nhìn chung có hai phương pháp: phương pháp dùng chất ngoại sinh và phương pháp dùng chất nội sinh.

Phương pháp ngoại sinh

Trong phương pháp dùng chất ngoại sinh (exogenous material), người ta sử dụng một chất tương phản từ (ngoại sinh) tiêm vào cơ thể theo đường tĩnh mạch. Chúng ta biết rằng thuốc tương phản từ ngoại bào có tác dụng làm giảm cả thời gian T1 lẫn T2. Khi có mặt trong hệ thống mạch máu với một nồng độ cao, tác dụng làm giảm T2 của chúng khá rõ rệt, biểu hiện bằng sự suy giảm tín hiệu ở những vùng có tình trạng tưới máu tốt. Những vùng chậm suy giảm tín hiệu được xem như có tình trạng tưới máu kém hơn (đánh giá định tính).

Cách làm thông dụng là bơm dồn (bolus), nghĩa là bơm một lượng thuốc thật nhiều và thật nhanh vào tĩnh mạch rồi dùng một kỹ thuật chụp nhanh như chuỗi xung đồng phẳng EPI để ghi nhận sự thay đổi tín hiệu vốn xảy ra rất nhanh ở các mô cần đánh giá khi thuốc tương phản lần đầu chảy qua vùng mô đó. Ở não, thời gian chụp toàn bộ não thường chỉ dưới 2 giây.

Từ dữ liệu về sự thay đổi tín hiệu theo thời gian, người ta sẽ biến đổi thành dữ liệu về nồng độ tương đối của thuốc có trong mô theo thời gian. Những dữ liệu này cuối cùng sẽ được tính toán để quy thành các chỉ số huyết động (đánh giá định lượng). Quá trình tính toán này hiện nay đều do máy tính thực hiện nên chúng ta không bàn sâu ở đây. Kết quả có thể được hiển thị dưới dạng các bản đồ tưới máu và có thể được mã hóa bằng các màu sắc khác nhau, biểu thị các giá trị huyết động khác nhau cho từng vùng.

Phương pháp nội sinh

Trong phương pháp này, người ta sử dụng các kỹ thuật cộng hưởng từ để đánh dấu trực tiếp lên các proton trong máu trước khi chúng chảy vào vùng khảo sát. Cụ thể, người ta có thể dùng một xung bão hòa hoặc xung đảo nghịch 180o để “đánh dấu” các proton. Do đã bị đánh dấu (bão hòa hoặc đảo nghịch), dòng máu có chứa các proton này khi chảy vào vùng khảo sát sẽ làm giảm tín hiệu của vùng đó. Sự khác biệt tín hiệu khi so với hình gốc, nghĩa là hình chụp khi chưa đánh dấu, phản ánh tình trạng tưới máu của vùng đang được khảo sát.

7. NHỮNG ĐIỂM CẦN GHI NHỚ

Những nguyên lý được phân tích trong phần này phần lớn đã được bàn luận khá chi tiết ở những phần trước, ngoại trừ nguyên lý trọng khuếch tán và trọng tưới máu. Do vậy chúng ta chỉ nhắc lại những điểm quan trọng cần nhớ đối với hai nguyên lý này.

  • Hiện tượng khuếch tán xảy ra do chuyển động Brown của các phân tử khí hoặc lỏng, nghĩa là chuyển động tự do và ngẫu nhiên theo mọi hướng. Mức độ khuếch tán của một chất ở một nhiệt độ nhất định được biểu hiện bằng hệ số khuếch tán.
  • Do những đặc điểm về cấu trúc vi thể, các phân tử nước trong cơ thể khuếch tán không đồng đều theo mọi hướng. Chẳng hạn với cấu trúc của hệ thần kinh, hiện tượng khuếch tán xảy ra mạnh hơn dọc theo đường đi của các bó chất trắng. Để có thể biểu thị cả độ lớn lẫn chiều hướng khuếch tán, thay vì sử dụng hệ số khuếch tán thông thường, người ta sử dụng một hệ số đặc biệt hơn gọi là hệ số khuếch tán biểu kiến ADC.
  • Để đánh giá được mức độ khuếch tán, chúng ta phải dùng các thang từ đặc biệt hơn, cho phép bộc lộ tình trạng lệch pha do ảnh hưởng của khuếch tá Các thang từ khuếch tán này được điều chỉnh bằng một tham số gọi là hệ số nhạy cảm khuếch tán b. Giá trị b = 0 cho biết ảnh chụp không nhạy với khuếch tán, nghĩa là ảnh bình thường. Giá trị b nằm trong khoảng 500 đến 1500 thường được sử dụng để đánh giá khả năng khuếch tán trong lâm sàng.
  • Bộ hình khuếch tán điển hình gồm có một hình trọng T2, một hình trọng khuếch tán DW và một hình bản đồ Bản đồ ADC là hình được vẽ lại từ các giá trị ADC của các mô, do vậy vùng kém khuếch tán sẽ có màu đen hơn vùng khuếch tán tốt. Ngược lại, hình trọng khuếch tán DW ghi nhận tín hiệu của các proton trong quá trình khuếch tán của chúng tuy vẫn bị chứa một phần đặc thù trọng T2. Do vậy vùng có tín hiệu cao trên hình trọng khuếch tán DW là vùng giảm mức độ khuếch tán, ngược lại với hình bản đồ ADC.
  • Tình trạng tưới máu tại các mô biểu thị cho hoạt động chức năng của mô: lượng máu đến mô càng nhiều, hoạt động chức năng càng mạnh. Lượng máu đến mô có thể đánh giá được bằng cách dùng một chất đánh dấu nào đó mà chúng ta có thể “đo được” bằng các kỹ thuật cộng hưởng từ.
  • Chất đánh dấu “ngoại sinh” thường dùng là một loại thuốc tương phản từ. Chúng được bơm thật nhiều và nhanh vào tĩnh mạch, nhanh chóng làm thay đổi tình trạng từ hóa tại các mô. Khi dùng các kỹ thuật chụp thật nhanh, chúng ta có thể “đo được” sự thay đổi này.
  • Chất đánh dấu “nội sinh” chính là các proton đang có mặt trong dòng máu chả Chúng được đánh dấu từ tính trước khi chảy vào vùng mô cần khảo sát bằng một phương pháp nào đó, chẳng hạn như bão hòa hoặc đảo nghịch nó. Nhờ đó khi chảy vào vùng mô đang được khảo sát, chúng có thể được nhận ra bằng các kỹ thuật chụp cộng hưởng từ.

Nguồn: Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 9, NXB ĐHQG TPHCM, Trang 137-156.

 

 

PHẦN 6: KỸ THUẬT CHỤP NHANH TRONG CỘNG HƯỞNG TỪ

Về nguyên tắc, kỹ thuật chụp cộng hưởng từ bằng các chuỗi xung cơ bản đã được bàn luận trong các phần trước có thể cho ra các hình với cấu trúc giải phẫu tốt hơn nhiều so với các kỹ thuật chụp hình khác (Xquang quy ước, chụp cắt lớp điện toán CT và siêu âm). Nhược điểm lớn nhất của kỹ thuật chụp cộng hưởng từ là tốn thời gian. Để khắc phục nhược điểm này, nhiều kỹ thuật chụp nhanh hơn đã được phát minh và ứng dụng vào thực tế. Mục tiêu của phần này là bàn luận các kỹ thuật chụp nhanh với nội dung cụ thể như sau:

  • Các chiến lược tổng quát
  • Kỹ thuật chụp đa lớp cắt
  • Kỹ thuật điểm vang đồng phẳng
  • Kỹ thuật điểm vang spin nhanh
  • Một số kỹ thuật mới

1. CÁC CHIẾN LƯỢC TỔNG QUÁT

Để dễ hình dung các kỹ thuật chụp nhanh sẽ được bàn luận trong phần này, chúng ta sẽ sử dụng chuỗi xung điểm vang spin làm cơ sở để tính toán thời gian cần thiết để có được một hình cộng hưởng từ. Trên cơ sở phân tích này, chúng ta sẽ tìm cách tối ưu hóa thời gian chụp bằng nhiều cách khác nhau, cho ra các kỹ thuật chụp hình nhanh đang được sử dụng rất phổ biến.

Chúng ta đã biết một chuỗi xung điểm vang spin gồm có một xung kích thích 90o được lập lại sau mỗi khoảng thời gian TR một số lần N, mỗi lần ghi nhận được một điểm vang tại thời điểm TE sau khi đã áp dụng một xung tái hồi 180o tại thời điểm TE/2. Mỗi điểm vang sau đó sẽ được lấy mẫu và số hóa rồi được ghi lại thành một hàng trong một bảng hai chiều gọi là k-không gian. Số hàng cần điền vào k-không gian bằng với số điểm vang cần lấy mẫu N. Để giảm sai số đo đạc, toàn bộ quá trình này có thể được thực hiện lại vài lần, gọi là số lần đo đạc NEX (number of excitation). Kết quả các lần đo đạc sẽ được cộng lại và lấy trung bình.

Theo đấy, thời gian chụp được một ảnh cộng hưởng từ có thể tính bằng công thức:

Thời gian chụp = TR x N x NEX

Trong công thức này, NEX là một giá trị phụ thuộc vào chất lượng đo đạc của hệ thống cộng hưởng từ (thiết bị đo đạc); đương nhiên giá trị nhỏ nhất của con số này là 1. Ngược lại, giá trị thời kích TR và số hàng N cần điền vào k-không gian phụ thuộc vào cách thức phát xung và cách điền các hàng vào k-không gian. Những chiến lược thực hiện chụp nhanh có thể làm thay đổi cả công thức tính thời gian chụp được cho ở trên. Dưới đây chúng ta phác qua một số chiến lược quan trọng.

Giảm bớt các thành phần trong chuỗi xung

Trong các chuỗi xung được trình bày trong phần trước, một số chuỗi sử dụng thêm các xung với những mục đích đặc biệt. Chẳng hạn chuỗi xung bão hòa mỡ cần phải phát thêm một xung “đặc hiệu” cho mỡ để bão hòa nó rồi nhiễu phá độ từ hóa ngang để làm cho nó trơ đối với xung kích thích sau đó.

Trong nhiều trường hợp, việc sử dụng một xung như thế hoàn toàn không cần thiết và có thể bỏ đi. Chẳng hạn nếu không có nhu cầu xóa mỡ thì rõ ràng có thể loại bỏ hoàn toàn xung xóa mỡ, nghĩa là dùng các chuỗi xung thông thường.

Thế nhưng nếu vẫn phải dùng xung xóa mỡ, thời gian chụp vẫn có thể giảm bớt được bằng cách thay vì phát trước mỗi xung kích thích một xung bão hòa mỡ, người ta có thể “tiết kiệm” bằng cách phát một xung bão hòa cho nhiều xung kích thích. Chẳng hạn dùng một xung bão hòa chung cho mỗi 32 xung kích thích.

Rút ngắn thời kích TR

Rút ngắn thời kích TR rõ ràng là một ý tưởng đầu tiên khi cần giảm bớt thời gian chụp, thế nhưng ý tưởng này gặp ngay một trở ngại cơ bản: thời kích TR là một tham số quan trọng để tạo ra độ tương phản cần thiết: hình trọng T1 cần thời gian TR ngắn; hình trọng T2 cần thời gian TR dài.

Trong Phần trước chúng ta đã biết một giải pháp để giảm bớt thời gian TR: dùng một góc lật nhỏ. Theo cách này, các chuỗi xung điểm vang thang từ GRE có thể được xem như là một cải thiện đáng kể về thời gian chụp so với các chuỗi xung điểm vang spin SE. Theo tính toán, để duy trì được độ tương phản tốt nhất, đặc biệt trên hình trọng T1, khi TR trong khoảng trên dưới 100 ms (mili giây), góc lật nên nằm trong khoảng từ 60o-90o. Khi TR trong khoảng trên dưới 50 ms, góc lật cũng trên dưới 50o. Khi TR nhỏ hơn nữa, góc lật không nên quá nhỏ, chẳng hạn nếu TR = 6 ms thì α = 15o.

Một giải pháp khác có thể xem xét là giảm bớt thời vang TE, chẳng hạn bằng cách giảm bớt thời gian lấy mẫu. Giảm bớt thời gian lấy mẫu có thể bằng cách lấy mẫu nhanh hơn (lấy nhiều mẫu trong một khoảng thời gian ngắn hơn) hoặc lấy ít mẫu đi (kỹ thuật nửa điểm vang).

Tăng tối đa thời gian thu nhận tín hiệu

Khi xem xét diễn tiến thời gian của các chuỗi xung đã bàn luận trong phần trước, chúng ta nhận ra rằng thời gian thu nhận dữ liệu (thời gian lấy mẫu) chỉ chiếm một phần rất nhỏ trong tổng số thời gian chụp. Khoảng thời gian không thực hiện thu nhận dữ liệu chính là thời gian chết (dead time). Sử dụng tối đa thời gian chết này sẽ rút ngắn thời gian chụp xuống một cách rất ngoạn mục.

  1. Chiến lược thứ nhất là chụp cùng lúc nhiều lớp cắt. Với kỹ thuật chụp hai chiều (2D), mỗi lớp cắt sẽ được kích thích bằng một xung kích thích riêng biệt có tần số phù hợp đã được chuẩn bị trước bằng một thang chọn lớp. Với kỹ thuật chụp ba chiều (3D), toàn bộ khối cơ thể cần khảo sát có thể được chụp chung một lần và dữ liệu được tổ chức thành một k-không gian ba chiều. Sau đó bằng thuật toán Fourier ba chiều, chúng ta có thể “xắt mỏng” khối cơ thể đã chụp thành từng “miếng” có độ dày như ý. Chiến lược chụp cùng lúc nhiều lớp cắt sẽ được bàn luận chi tiết trong Phần 2.

  2. Chiến lược thứ hai là tạo và ghi nhận nhiều điểm vang trong cùng một lần phát xung kích thích. Như chúng ta đã biết, một điểm vang có thể được tạo ra sau một xung tái lập 180o (điểm vang spin hay spin echo) hoặc sau khi áp dụng một thang mã tần số Gf (điểm vang thang từ hay gradient echo). Theo đấy, các điểm vang thu nhận được sau một lần phát xung kích thích được gọi là xâu điểm vang (echo train); bản thân xung kích thích được gọi là phát bắn (shot). Ngoài ra, khoảng thời gian thu nhận một xâu điểm vang được gọi là thời ghi xâu (echo train duration) và số lượng điểm vang trong một xâu được gọi là chiều dài xâu ETL (echo train length).

    Trong chiến lược ghi nhận nhiều điểm vang, người ta cũng phải thay đổi thứ tự điền các hàng dữ liệu vào k-không gian. Trước tiên, do có nhiều điểm vang trong cùng một phát bắn, chúng ta có nhiều thời vang TE khác nhau. Thứ đến, chúng ta đã biết từ Phần trước rằng mỗi hàng trong k-không gian là kết quả lấy mẫu một điểm vang, trong đó hàng ở giữa là điểm vang có được khi dùng thang mã pha yếu nhất (bằng zero). Mặt khác, dữ liệu vùng trung tâm của k-không gian chủ yếu mã hóa các thông tin về độ tương phản và cường độ tín hiệu. Vì thế trong chiến lược này, điểm vang được điền vào hàng giữa của k-không gian sẽ có ảnh hưởng nhiều nhất đến độ tương phản của ảnh. Thời vang của điểm vang này do vậy được gọi là thời vang hiệu dụng (effective TE, viết tắt là TEef). Chọn lựa vị trí của thời vang hiệu dụng TEef ở đầu, giữa hoặc cuối xâu điểm vang sẽ làm thay đổi độ tương phản của hình ảnh thu được. Chiến lược này được áp dụng trong kỹ thuật chụp điểm vang đồng phẳng EPI và điểm vang spin nhanh ở các phần 3 và 4.

  1. Chiến lược thứ ba cho phép tạo ra cùng lúc nhiều hình có độ tương phản khác nhau, cụ thể hơn là một hình trọng T2 (T2W) và một hình trọng đậm độ proton (PDW). Theo một nghĩa nào đó, chiến lược này có thể xem như một hình thái khác của chiến lược thứ hai, nghĩa là nó cũng tạo ra và ghi nhận nhiều điểm vang trong cùng một xung kích thích. Khác biệt chủ yếu là trên cùng một xung kích thích có TR dài, điểm vang thứ nhất được ghi nhận tại một thời vang TE khá ngắn để tạo ra hình PDW còn điểm vang thứ hai được ghi nhận tại một thời vang TE dài để tạo ra hình T2W (Hình 1).


Hình 1:
Hai điểm vang được lấy trong cùng một lần phát xung kích thích với TR dài. Điểm vang thứ nhất có thời vang TE ngắn (TE1) đóng góp cho hình trọng đậm độ proton. Điểm vang thứ hai có thời vang TE dài (TE2) đóng góp cho hình trọng T2.

Thay đổi cách điền dữ liệu vào k-không gian

Một số kỹ thuật gần đây không điền dữ liệu vào k-không gian theo từng hàng như chúng ta đã biết mà có thể điền vào theo một vòng xoắn gốc hoặc điền theo từng góc xoay. Để độc giả có thể hình dung được một bức tranh tổng thể và đầy đủ về các kỹ thuật chụp nhanh, chúng ta cũng sẽ phác thảo sơ qua một số kỹ thuật chụp loại này trong Phần 5.

2. KỸ THUẬT CHỤP ĐA LỚP CẮT

Kỹ thuật chụp đa lớp cắt (multislice) cho phép chúng ta thu nhận tín hiệu của nhiều lớp cắt trong cùng một khoảng thời gian, làm hiệu suất đo đạc tăng lên và nhờ vậy làm giảm thời gian chụp. Trong phần này chúng ta xem xét hai phương pháp: chụp đa lớp cắt hai chiều và chụp ba chiều.

Chụp đa lớp cắt hai chiều

Về mặt lý thuyết, phương pháp chụp đa lớp cắt hai chiều không tạo ra các chuỗi xung mới. Chúng đơn thuần chỉ là sự cải tiến về cách sắp đặt các xung cho hợp lý hơn về thời gian, tận dụng các khoảng thời gian chết khi đang chụp một lớp cắt để chụp thêm nhiều lớp cắt khác.

Nguyên lý rất đơn giản: Sau khi kích thích và đo tín hiệu của một lớp cắt, trong khoảng thời gian chờ độ từ hóa dọc của lớp cắt này khôi phục, chúng ta có thể kích thích và đo tín hiệu của một lớp cắt khác. Xung kích thích thứ hai phải có tần số khác với tần số của xung thứ nhất để không làm ảnh hưởng đến lớp cắt thứ nhất. Nếu thời gian vẫn còn trống, chúng ta có thể thực hiện kích thích và đo tín hiệu của một hoặc nhiều lớp cắt khác nữa (Hình 2).


Hìn
h 2: Chụp đa lớp cắt hai chiều. Trong khi chờ để kích thích và đo lại tín hiệu của lớp cắt thứ nhất, chúng ta kích thích và đo tín hiệu của lớp cắt thứ ba, thứ hai rồi thứ tư xen kẽ nhau để làm giảm khả năng nhiễu kế cận.

Chúng ta biết rằng để chụp một lớp cắt, trước tiên chúng ta cần dùng một thang chọn lớp. Thang từ này sẽ làm cho các proton trong các lớp cắt khác nhau dọc theo thang từ quay với tần số khác nhau. Để chụp một lớp cắt, chúng ta chỉ cần phát xung kích thích có tần số phù hợp (cộng hưởng được) với các proton trong lớp cắt đó. Khi áp dụng kỹ thuật chụp đa lớp cắt, người ta tránh không chụp liên tiếp hai lớp kế cận nhau mà chụp xen kẽ như được minh họa trong Hình 2 để tránh tình trạng nhiễu kế cận (cross talk). Tình trạng này xảy ra bởi vì tần số quay của hai lớp cắt kế cận nhau không khác biệt nhiều, đặc biệt là đối với các proton nằm ở vùng biên giáp ranh giữa hai lớp cắt. Do vậy xung kích thích của lớp cắt này có thể kích thích cả các proton nằm ở vùng ranh giới của lớp cắt kia, làm sai lệch kết quả đo tín hiệu của lớp cắt đang được kích thích.

Kỹ thuật chụp ba chiều

Như tên gọi của nó đã cho thấy, kỹ thuật chụp ba chiều hay chụp 3D không chụp từng lớp riêng biệt như trong kỹ thuật chụp hai chiều; nó chụp toàn bộ một khối cơ thể, nghĩa là chụp một vật theo không gian ba chiều vốn có của vật và khi cần có thể cắt vật thành từng lát dày mỏng tùy theo nhu cầu. Theo nghĩa này, kỹ thuật chụp ba chiều có thể được xem như thuộc nhóm kỹ thuật chụp đa lớp cắt.

Ở cuối phần trước chúng ta đã nhấn mạnh rằng kỹ thuật chụp ba chiều không dùng thang chọn lớp bởi vì nó không chụp từng lớp. Để mã hóa vị trí không gian của các voxel, kỹ thuật chụp ba chiều sử dụng hai thang mã pha vuông góc với nhau, mỗi thang từ này mã hóa cho một chiều không gian. Chiều không gian thứ ba được mã hóa bằng thang mã tần số.

Với cách thức chụp như vậy, tín hiệu thu được trong kỹ thuật chụp ba chiều là tín hiệu tổng hợp của cả khối cơ thể đang khảo sát. Tín hiệu này cũng được lấy mẫu rồi điền vào k-không gian. Tuy nhiên, k-không gian bây giờ không phải là một bảng hai chiều như trong kỹ thuật chụp hai chiều mà là một cấu trúc ba chiều. Sau đó, thay vì dùng thuật toán Fourier hai chiều thông thường, người ta phải dùng thuật toán Fourier ba chiều (3D Fourier algorithm) để xử lý k-không gian này và tái tạo lại hình ảnh của từng lát hoặc một cấu trúc giải phẫu nào đó nằm trong khối cơ thể đã được khảo sát. Chú ý rằng vì tên gọi “thuật toán” dễ gây bối rối cho nhiều độc giả nên trong các tài liệu y khoa người ta thường thay bằng từ ngữ “kỹ thuật Fourier” hay “kỹ thuật biến đổi Fourier” 2DFT, 3DFT (hai chiều hoặc ba chiều).

Do ghi nhận tín hiệu tổng hợp của cả khối cơ thể nên kỹ thuật chụp ba chiều có thể cho ra các lát cắt liên tục nhau, nghĩa là không có khoảng trống giữa chúng. Đây là một ưu điểm của kỹ thuật chụp ba chiều so với kỹ thuật chụp hai chiều, trong đó giữa các lớp cắt thường có một khoảng trống nhất định. Với ưu điểm này, kỹ thuật chụp ba chiều hiện được sử dụng ngày càng phổ biến, nhất là trong những trường hợp cần có những lát cắt mỏng, liên tục để phát hiện các tổn thương nhỏ.

Một ưu điểm nữa của kỹ thuật chụp ba chiều là tỷ lệ tín hiệu/nhiễu SNR cao nên ảnh chụp bằng kỹ thuật này có độ trung thực cao và rõ nét hơn. Do vậy ở những vùng “khó chụp” như góc cầu tiểu não, khi cần khảo sát chi tiết người ta có thể dùng kỹ thuật chụp ba chiều.

Kỹ thuật chụp ba chiều cũng rất thường được dùng để chụp hệ thống mạch máu (mạch đồ cộng hưởng từ, MR Angiography hay MRA). Ứng dụng của kỹ thuật chụp ba chiều trong lĩnh vực MRA sẽ được bàn luận chi tiết hơn trong các phần sau.

Cuối cùng cũng cần phân biệt giữa kỹ thuật chụp ba chiều và kỹ thuật dựng hình ba chiều. Chúng nằm ở hai công đoạn khác nhau: kỹ thuật chụp ba chiều thuộc công đoạn chụp hình, liên quan đến các chuỗi xung và thu nhận tín hiệu. Ngược lại kỹ thuật tái tạo ảnh ba chiều hay dựng ảnh ba chiều thuộc công đoạn xử lý hình, liên quan đến các thuật toán xử lý ảnh số bằng máy tính. Một số kỹ thuật dựng hình ba chiều thường được dùng trong cộng hưởng từ và chụp cắt lớp điện toán là MIP (maximum intensity projection), dựng khối vật (volume rendering) và dựng bề mặt (surface rendering). Các kỹ thuật dựng hình sẽ được thảo luận nhiều hơn trong các phần sau.

Với những kỹ thuật dựng hình này, dữ liệu có thể là dữ liệu hai chiều thu được bằng kỹ thuật chụp hai chiều hoặc dữ liệu ba chiều thu được bằng kỹ thuật chụp ba chiều. Nếu dùng dữ liệu hai chiều, hình tái tạo có thể bị “gẫy đoạn” nhiều vì giữa các lớp cắt luôn có một khoảng trống, trong khi đó nếu dùng dữ liệu ba chiều, hình tái tạo sẽ đều đặn hơn.

3. KỸ THUẬT ĐIỂM VANG ĐỒNG PHẲNG

Mặc dù đã được Peter Mansfield đề xuất từ năm 1977 nhưng do những hạn chế về công nghệ phần cứng và khả năng xử lý của máy tính nên kỹ thuật điểm vang đồng phẳng EPI (echo planar imaging) chỉ mới được sử dụng rộng rãi trong những năm gần đây. Đặc điểm nổi bật của kỹ thuật này là thời gian chụp toàn bộ một hình cộng hưởng từ rất ngắn, có thể đạt đến mức 20 ms. Với thời gian này, các ảnh giả (artifact) do chuyển động gây ra hầu như bị loại bỏ hoàn toàn. Ngoài ra, nhiều quá trình sinh lý vốn xảy ra rất nhanh cũng có thể ghi nhận được, nghĩa là chúng ta có thể đánh giá được “chức năng” của một số cơ quan.

Diễn tiến các xung

Ở hình thái cơ bản nhất, kỹ thuật chụp điểm vang đồng phẳng sử dụng một xung kích thích α, sau đó cho thang mã tần số dao động thật nhanh, tạo ra một xâu điểm vang (echo train). Về bản chất, các điểm vang trong xâu đều thuộc loại điểm vang thang từ (gradient echo) vì chúng được tạo ra sau khi áp dụng một thang mã tần số Gf (Hình 3). Toàn bộ các điểm vang đều được sử dụng để tạo một hình cộng hưởng từ.

Mặt khác, do các điểm vang đều được lấy từ một lần phát xung, thời gian TR được xem như “không có” hoặc “vô tận”. Điều này cũng đồng nghĩa rằng các hình tạo ra bằng kỹ thuật điểm vang đồng phẳng không phải là hình trọng T1 mà cơ bản là hình trọng T2. Nói chính xác hơn, TEef nằm gần đầu xâu điểm vang cho ra hình trọng T2 còn TEef nằm gần cuối xâu cho ra hình trọng T2* do hiện tượng suy giảm cảm ứng tự do FID gây ra.


Hình 3:
Diễn tiến chuỗi xung trong kỹ thuật điểm vang đồng phẳng EPI. Để cho đơn giản, thang chọn lớp Gs và thang mã pha Gp đã được lược bỏ.

Thang mã pha

Chúng ta biết rằng thang mã pha cần được áp dụng với cường độ tăng dần từ âm sang dương trong các chuỗi xung căn bản đã bàn luận ở phần trước, mỗi lần ứng với một lần phát xung và kéo dài trong một thời gian rất ngắn. Với kỹ thuật điểm vang đồng phẳng, do nhiều điểm vang được ghi nhận ngay trong một lần phát xung nên cách áp dụng thang từ như trên không sử dụng được. Thay vì thế người ta có thể dùng một trong hai phương pháp (Hình 4):

  1. Phương pháp mã pha lách tách (blipped phase-encoding) áp dụng một loạt thang từ nhỏ có cường độ không đổi, tựa như những tiếng nổ lách tách đều đều. Nhờ đó thông tin mã pha được cộng dần vào, cho phép ghi mỗi điểm vang vào một hàng của k-không gian.

  2. Phương pháp mã pha đều (constant phase-encoding) áp dụng một thang từ kéo dài không thay đổi cường độ.

Thứ tự điền dữ liệu vào k-không gian

Để điền dữ liệu vào k-không gian, các chuỗi xung căn bản điền lần lượt từng hàng, mỗi hàng ứng với một điểm vang. Trong kỹ thuật điểm vang đồng phẳng, thứ tự điền cụ thể mỗi hàng vào k-không gian được chọn lựa tùy theo từng phương pháp áp dụng thang mã pha. Hình 5 minh họa sự khác biệt giữa cách điền dữ liệu trong các chuỗi xung căn bản và cách điền dữ liệu được sử dụng trong kỹ thuật điểm vang đồng phẳng.


Hình 4:
Phương pháp mã pha lách tách áp dụng thang từ Gp (b) nhiều lần thật nhanh với cường độ bằng nhau. Phương pháp mã pha đều áp dụng thang từ Gp (c) một lần kéo dài với cường độ không đổi.


Hìn
h 5: Điền các hàng dữ liệu vào k-không gian trong một chuỗi xung thông thường (bên trái) và trong kỹ thuật điểm vang đồng phẳng (bên phải).

Một phát hoặc nhiều phát

Kỹ thuật điểm vang đồng phẳng có thể được thực hiện bằng cách dùng một xung kích thích duy nhất (một phát, single-shot) hoặc nhiều xung kích thích (nhiều phát, multi-shot). Trong trường hợp này, mỗi xung kích thích được xem như một phát bắn (shot).

Phương pháp điểm vang đồng phẳng một phát có thời gian chụp cực ngắn, thường dưới 100 ms; toàn bộ dữ liệu trong k-không gian đều được lấy trong thời gian này. Để làm được như thế, phương pháp chụp một phát đòi hỏi các thang từ mã hóa phải có khả năng chuyển bật với tốc độ cực kỳ nhanh, một yêu cầu không phải hệ thống máy cộng hưởng từ nào cũng có thể thực hiện được. Ngoài ra, độ phân giải và tỷ lệ tín hiệu/nhiễu SNR khá thấp cũng là một trở ngại của phương pháp này.

Để khắc phục một phần những trở ngại vừa nêu, người ta có thể dùng phương pháp điểm vang đồng phẳng nhiều phát. Thay vì điền đầy k-không gian ngay trong một phát bắn, trong kỹ thuật nhiều phát, mỗi phát chỉ đóng góp một phần dữ liệu trong k-không gian. Độ phân giải và tỷ lệ tín hiệu / nhiễu SNR nhờ vậy được cải thiện.

Cũng cần nhấn mạnh rằng do thời gian lấy mẫu tương đối dài, kỹ thuật điểm vang đồng phẳng nói chung rất dễ bị ảnh giả (artifact) do tình trạng không đồng nhất của từ trường cục bộ và độ xê dịch hóa học. Để giảm bớt các ảnh giả kiểu này, người ta có thể dùng một xung tái lập 180o tại thời điểm giữa thời vang hiệu dụng TEef, nghĩa là tại thời điểm TEef/2. Tuy nhiên ảnh hưởng của độ xê dịch hóa học, đặc biệt là ảnh hưởng của mỡ không được khắc phục tốt lắm bằng xung tái lập này. Do vậy trong kỹ thuật điểm vang đồng phẳng người ta luôn sử dụng một xung xóa mỡ và xem nó như một xung thường quy.

Các biến thể

Với hình thái căn bản đã được trình bày ở đầu phần này, kỹ thuật điểm vang đồng phẳng có thể được tích hợp với một số xung đặc dụng, tạo ra nhiều biến thể rất có ích. Chẳng hạn nếu xung kích thích là xung 90o cùng với một xung tái lập 180o được thực hiện trước khi cho thang mã tần số dao động thật nhanh như vừa nêu ở trên, chúng ta gọi đây là kỹ thuật điểm vang đồng phẳng spin (spin echo-echo planar imaging).

Tương tự, chúng ta có thể áp dụng một xung chuẩn bị trước khi thực hiện các xung điểm vang đồng phẳng. Chẳng hạn có thể dùng một xung truyền độ từ hóa MT, xung khôi phục đảo nghịch 180o

Một biến thể đáng chú ý khác là hình thái lai giữa kỹ thuật điểm vang đồng phẳng và kỹ thuật điểm vang spin nhanh. Kỹ thuật có tên là GRASE (Gradient Recalled and Spin Echo) này vừa thu nhận các điểm vang thang từ do thang mã tần số tạo ra, vừa thu nhận các điểm vang spin do xung tái lập 180o tạo. Tuy nhiên, kỹ thuật này chưa có nhiều ứng dụng lâm sàng.

Khả năng ứng dụng lâm sàng

Do thời gian chụp cực ngắn, kỹ thuật điểm vang đồng phẳng đã khắc phục được nhược điểm lớn nhất của cộng hưởng từ. Với kỹ thuật này, người ta có thể ghi nhận được nhiều quá trình sinh lý và sinh bệnh học vốn xảy ra rất nhanh, do vậy nó đã làm thay đổi sâu sắc triển vọng ứng dụng của cộng hưởng từ đối với nhiều vùng cơ thể và nhiều đặc điểm sinh bệnh học.

Chẳng hạn đối với não, kỹ thuật này được dùng để đánh giá khả năng tưới máu (perfusion) cho nhu mô não, khả năng khuyếch tán (diffusion) của nước qua các mô não. Nhờ vậy trong những năm gần đây, kỹ thuật điểm vang đồng phẳng đã trở thành cơ sở nền tảng của một lĩnh vực gọi là chụp cộng hưởng từ chức năng (functional MRI).

Hoạt động của tim và các mạch máu lớn với rất nhiều chuyển động thường gây nhiều khó khăn cho nhiều mô thức chụp hình, kể cả CT và MRI. Khả năng chụp nhanh của kỹ thuật điểm vang đồng phẳng mở ra nhiều triển vọng ứng dụng của nó trong lĩnh vực này.

4. KỸ THUẬT ĐIỂM VANG SPIN NHANH

Theo một nghĩa nào đó, kỹ thuật điểm vang spin nhanh (fast spin echo) có thể được xem như phiên bản nhanh của loại chuỗi xung điểm vang spin, tương tự như kỹ thuật điểm vang đồng phẳng là phiên bản nhanh của loại chuỗi xung điểm vang thang từ. Thuật ngữ ban đầu của kỹ thuật điểm vang spin nhanh là RARE (Rapid Acquisition with Relaxation Enhancement) nhưng hiện nay ít được sử dụng. Với các máy của hãng Siemens, kỹ thuật này có tên thương mại là Turbo spin echo hay TurboSE.

Diễn tiến các xung

Tương tự như kỹ thuật điểm vang đồng phẳng, trong kỹ thuật điểm vang spin nhanh, sau mỗi xung kích thích sẽ có một xâu điểm vang được tạo thành và được thu nhận. Tuy nhiên khác với kỹ thuật điểm vang đồng phẳng, mỗi điểm vang này được tạo ra do một xung tái lập 180o, không phải do thang từ. Nghĩa là chúng thuộc loại điểm vang spin. Hình 6 trình bày diễn tiến thời gian của các xung, tạm bỏ qua không trình bày các thang từ.


Hình 6:
Các xung trong kỹ thuật điểm vang spin nhanh, bao gồm một xung kích thích 90o, theo sau là một loạt các xung tái lập 180o, mỗi xung tái lập tạo ra một điểm vang spin.

Các thang từ

Chúng ta đã biết từ phần trước rằng trong chuỗi xung điểm vang spin, ngoài việc áp đặt một thang chọn lớp vào lúc phát xung kích thích, chúng ta còn phải áp đặt lại thang từ này vào lúc phát xung tái lập 180o. Đồng thời vào thời điểm đo tín hiệu, chúng ta cũng cần áp đặt lại thang mã tần số Gf.

Do vậy trong kỹ thuật điểm vang spin nhanh, đi kèm với một xung tái lập 180o phải là một lần áp dụng thang chọn lớp Gs và đi kèm với mỗi điểm vang được tạo ra phải là một lần áp dụng thang mã tần số Gf.

Ngoài ra, do mỗi xung tái lập 180o đều làm mất tác dụng của thang mã pha nên cả hai phương pháp mã pha lách tách và mã pha đều như trong kỹ thuật điểm vang đồng phẳng đều không dùng được. Thay vì thế, chúng ta phải áp dụng nhiều lần thang mã pha với cường độ thay đổi tùy thuộc vào việc chọn thời vang hiệu dụng TEef ở đầu, ở giữa hay ở cuối xâu điểm vang. Chẳng hạn nếu muốn thời vang hiệu dụng TEef ở giữa xâu điểm vang như trong Hình 7, thang mã pha được cho giảm dần cường độ. Ngược lại nếu muốn thời vang hiệu dụng nằm ngay ở đầu xâu điểm vang, thang mã pha được cho tăng dần cường độ. Diễn tiến thời gian điển hình của các xung cùng với các thang từ được dùng trong kỹ thuật điểm vang spin nhanh được trình bày trong Hình 7.


Hình 7:
Diễn tiến thời gian của các xung trong kỹ thuật điểm vang spin nhanh. Đi kèm với mỗi cặp xung tái lập và điểm vang là một lần áp dụng các thang từ thích hợp. Thời vang hiệu dụng TEef được tính từ lúc phát xung kích thích đến lúc cường độ thang từ mã pha Gp bằng 0.

Mới nhìn qua, kỹ thuật điểm vang spin nhanh tưởng chừng có thể so sánh về tốc độ với kỹ thuật điểm vang đồng phẳng. Tuy nhiên do phải áp dụng nhiều lần cả ba thang từ cùng với nhiều xung tái lập 180o nên kỹ thuật này thực sự chậm hơn nhiều so với kỹ thuật điểm vang đồng phẳng.

Một phát hoặc nhiều phát

Tương tự như kỹ thuật điểm vang đồng phẳng, kỹ thuật điểm vang spin nhanh cũng có thể dùng phương pháp một phát hoặc nhiều phát. Do cách lấy nhiều điểm vang trong cùng một lần phát xung kích thích nên thực chất cả hai phương pháp một phát và nhiều phát đều không có TR hay có TR vô tận. Kết quả là hình thu được đều là hình trọng T2. Chất lượng hình ảnh của phương pháp một phát dĩ nhiên không bằng chất lượng của phương pháp nhiều phát nhưng bù lại thời gian chụp ngắn hơn. Để cải thiện chất lượng, các phiên bản thương mại của phương pháp một phát như chuỗi HASTE (Haft-fourier Acquisition Single-shot Turbo spin Echo) của hãng Siemens hay chuỗi SS-FSE (Single-Shot Fast Spin Echo) của hãng GE đều sử dụng các thang từ tốc độ cao và kỹ thuật nửa Fourier.

Tăng quang đường bờ

So với chuỗi xung điểm vang spin kinh điển, hình ảnh thu được bằng kỹ thuật điểm vang spin nhanh thường nhòe hơn và bờ kém sắc nét hơn, đặc biệt đối với các mô có T2 ngắn. Tình trạng này nặng nề hơn nếu chúng ta dùng chiều dài xâu dài, thời ghi xâu dài và thời vang hiệu dụng TEef nằm gần cuối xâu điểm vang.

Tuy nhiên khi mô có T2 ngắn nằm cạnh mô có T2 dài, chẳng hạn giữa mô não và dịch não tủy trong não thất, bờ của mô có T2 dài bị “tăng quang”, nghĩa là có tín hiệu cao hơn tín hiệu của nó (dịch não tủy). Điều này xảy ra do khi chụp bằng kỹ thuật điểm vang spin nhanh, bờ của mô có T2 ngắn bị nhòe sang phần mô có T2 dài, cộng thêm tín hiệu cho bờ của mô này và làm cho nó có tín hiệu cao hơn bình thường (Hình 8).


Hình
8: Ở hình bên trái, bờ thực sự giữa hai mô có T2 dài và T2 ngắn rõ nét. Ở hình bên phải, do tín hiệu phía mô có T2 ngắn được cộng thêm vào cho mô có T2 dài, vừa làm giảm kích thước thật của mô có T2 dài, vừa làm tăng quang bờ của nó.

5. MỘT SỐ KỸ THUẬT MỚI

Trong phần này chúng ta phác thảo sơ qua một số kỹ thuật mới có thời gian chụp nhanh hiện đã và vẫn đang được nghiên cứu, thử nghiệm để khẳng định được hiệu quả lâm sàng.

Thay đổi chiến lược điền vào k-không gian

Phương pháp kinh điển điền dữ liệu vào k-không gian là điền mỗi lần một hàng dữ liệu có được sau khi lấy mẫu một điểm vang. Theo cách này, mỗi điểm vang phải ứng với một thang mã pha ở một cường độ nhất định. Bằng cách thay đổi cách điền dữ liệu vào k-không gian, thời gian chụp có thể giảm đi đáng kể.

Giải pháp thứ nhất được gọi là kỹ thuật chụp k-không gian phân đoạn (segmented k-space imaging), được thực hiện bằng cách điền mỗi lần một phần dữ liệu hay một phân đoạn của k-không gian, nghĩa là mỗi lần điền nhiều hàng thay vì chỉ điền một hàng. Chẳng hạn với một k-không gian có 128 hàng, chúng ta có thể điền mỗi lần 8 hàng, vị chi mất 16 lần như thế để điền đủ 128 hàng thay vì phải mất 128 lần cho 128 hàng. Trong thực tế, kỹ thuật này được sử dụng trong lĩnh vực chụp tim mạch, cho phép “quay phim” hoạt động co bóp của tim và của các mạch máu lớn bằng một loạt phim chụp nhanh gọi là phim ci-nê.

Một giải pháp khác là thay vì điền theo từng hàng vào k-không gian, chúng ta có thể điền theo từng đường chéo đi từ tâm k-không gian hướng ra ngoại biên (kỹ thuật chụp xoay góc, radial imaging) hay điền xoắn trôn ốc từ tâm k-không gian (kỹ thuật chụp xoắn ốc, spiral imaging). Để thực hiện những kỹ thuật như vậy, người ta phải tổ hợp các thang mã pha và thang mã tần số theo một cách nào đó để khi lấy mẫu, thứ tự của mẫu vạch ra một đường đi đúng như cách điền mong muốn (Hình 9).


Hình 9:
Kỹ thuật chụp xoay góc (radial imaging) ở bên trái và chụp xoắn ốc (spiral imaging) ở bên phải.

Thay đổi chiến lược thu nhận dữ liệu

Trong thực tế chúng ta nhận thấy rằng tín hiệu của các phần mô nằm sát cạnh nhau không có sự sai biệt hoàn toàn, nghĩa là trong một chừng mực nào đó chúng thay đổi dần dần. Ý tưởng này cho phép chúng ta chỉ cần thay đổi một phần dữ liệu biểu thị cho những phần mô nằm sát cạnh nhau. Thay vì phải ghi mới toàn bộ dữ liệu, chúng ta chỉ ghi một phần dữ liệu mới và dùng lại những phần đã được ghi trước đó. Chúng ta gọi kỹ thuật này là kỹ thuật phần chung (view sharing).

Một minh họa điển hình cho kỹ thuật phần chung được sử dụng trong các trường hợp chụp hình có dùng thuốc tương phản từ là kỹ thuật chụp lỗ khóa (keyhole imaging). Ý tưởng cơ bản của kỹ thuật này như sau: khi so sánh với nhau, các hình trước và sau khi tiêm thuốc tương phản từ được xem như không có sự thay đổi gì về cấu trúc mà chỉ có sự thay đổi về khả năng bắt thuốc, nghĩa là thay đổi về độ tương phản do tác dụng của thuốc. Mặt khác, chúng ta đã biết rằng thông tin về độ tương phản của hình chủ yếu được lấy từ vùng trung tâm của k-không gian. Vì thế nếu đã ghi được toàn bộ k-không gian của hình trước khi tiêm thuốc, chúng ta chỉ cần thay thế vùng trung tâm trong k-không gian của nó bằng các thông tin thích hợp để có được k-không gian của hình sau khi tiêm. Nghĩa là chúng ta chỉ chụp phần “lỗ khóa” của một ổ khóa bởi vì chỉ có phần “lỗ khóa” mới bị thay đổi. Chẳng hạn để có được k-không gian của hình sau tiêm thuốc khi đã có k-không gian của hình trước tiêm thuốc với ma trận ảnh 256 x 256, chúng ta chỉ cần lấy mẫu 32 hàng cho vùng trung tâm thay vì 256 hàng. Hơn nữa, thay vì phải lấy 256 mẫu cho cả 32 hàng này, chúng ta chỉ cần lấy 32 mẫu cho mỗi hàng.

6. NHỮNG ĐIỂM CẦN GHI NHỚ

  • Thời gian chụp hình lâu là một trong những trở ngại căn bản của kỹ thuật chụp cộng hưởng từ. Tuy nhiên trở ngại này hiện đã được khắc phục bằng các kỹ thuật chụp nhanh.

  • Có nhiều chiến lược được sử dụng trong các kỹ thuật chụp nhanh, bao gồm các chiến lược rút ngắn thời gian TR, giảm bớt một số thành phần không cần thiết trong chuỗi xung, chụp cùng lúc nhiều lớp cắt, tạo và ghi nhận nhiều điểm vang và thay đổi chiến lược điền dữ liệu vào k– không gian.

  • Chụp cùng lúc nhiều lớp bằng phương pháp chụp hai chiều cắt tận dụng khoảng thời gian chết khi chụp một lớp cắt để chụp một vài lớp cắt kế cận. Chụp cùng lúc nhiều lớp bằng phương pháp chụp ba chiều có thể chụp toàn bộ khối thể tích cần chụp. Sau đó nếu cần có thể “xắt mỏng” khối này thành từng lát theo ý muốn bằng các kỹ thuật xử lý ảnh.

  • Kỹ thuật điểm vang đồng phẳng EPI và điểm vang spin nhanh FSE đều tạo ra và ghi nhận nhiều điểm vang trong cùng một lần phát xung kích thích. Độ tương phản của chúng nói chung đều thuộc loại trọng T2, mặc dù nếu thời vang hiệu TEef nằm ở cuối xâu, độ tương phản có đặc thù của T2*.

  • Kỹ thuật điểm vang đồng phẳng được thực hiện bằng cách cho thang mã tần số Gf thay đổi thật nhanh, tạo ra một xâu điểm vang thang từ. Vì vậy kỹ thuật điểm vang đồng phẳng có thể được xem như phiên bản nhanh của chuỗi xung điểm vang thang từ. Thứ tự điền các điểm vang vào k-không gian được chọn lựa cho phù hợp để vẫn bảo đảm được độ tương phản và độ phân giải cần thiết.

  • Kỹ thuật điểm vang spin nhanh là phiên bản nhanh của chuỗi xung điểm vang spin. Tuy nhiên do phải áp dụng nhiều xung tái lập 180o cũng như nhiều thang từ, kỹ thuật này nói chung chậm hơn nhiều so với kỹ thuật điểm vang đồng phẳng.

  • Một số kỹ thuật chụp nhanh khác có thể kể ra là: kỹ thuật chụp k– không gian phân đoạn, kỹ thuật chụp xoay góc, kỹ thuật chụp xoắn ốc, kỹ thuật chụp lỗ khóa. Nhìn chung những kỹ thuật này đều tập trung vào k-không gian: thay đổi cách thu nhận dữ liệu hoặc thay đổi cách điền dữ liệu vào k-không gian.

Nguồn: Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 6, NXB ĐHQG TPHCM, Trang 89-104.

 

 

 

 

 

PHẦN 3: NGUYÊN LÝ TƯƠNG PHẢN CỘNG HƯỞNG TỪ

 Một hình ảnh y học chỉ có ích khi nó cho phép chúng ta phân định rõ ràng các cấu trúc giải phẫu, kể cả các cấu trúc bất thường. Nói cách khác, các cấu trúc khác nhau cần được thể hiện trên hình với một mức độ khác biệt nhất định để chúng ta có thể xác định được ranh giới giữa chúng. Trong thực tế, sự khác biệt thường được biểu hiện bằng màu sắc khác nhau, phổ biến hơn là mức độ trắng đen khác nhau. Khi đó mức độ khác biệt trắng đen được gọi là độ tương phản (contrast). Trong thực tế, độ tương phản có thể được xem là một trong những chỉ số quan trọng nhất của một hình ảnh y học. Mục tiêu của phần này tập trung vào việc trình bày các nguyên lý tương phản được sử dụng trong các hình cộng hưởng từ. Nội dung cụ thể bao gồm:

  • Các tham số thời gian và góc lật
  • Nguyên lý tương phản cộng hưởng từ
  • Nguyên lý tương phản trọng T1
  • Nguyên lý tương phản trọng T2
  • Nguyên lý tương phản trọng đậm độ proton

1. CÁC THAM SỐ THỜI GIAN VÀ GÓC LẬT

Để sử dụng được các tính chất thời gian T1 và T2 của các mô, chúng ta cần chọn một thời điểm phù hợp để đo tín hiệu. Thoạt tiên chúng ta có thể cho rằng thời điểm tốt nhất là thời điểm vừa tắt xung kích thích vì lúc này, tín hiệu cộng hưởng từ mạnh nhất. Thế nhưng vấn đề không hoàn toàn đơn giản như vậy. Thứ nhất, lượng tín hiệu thu được trong một lần đo chưa đủ để chúng ta tạo lập được hình ảnh, vì vậy chúng ta cần phải đo nhiều lần. Thứ hai, như vừa lý luận ở trên, sự khác biệt tín hiệu giữa các mô là một yếu tố quan trọng hơn cường độ tín hiệu của từng mô bởi vì chính nó cho phép tạo ra một độ tương phản nhất định giữa các mô. Trong phần này chúng ta thử xem một số tham số thời gian có ảnh hưởng đến độ tương phản này.

Thời kích TR

Như đã nói ở trên, nếu chỉ kích thích một lần rồi đo tín hiệu, lượng dữ liệu của một lần đo như thế không đủ để chúng ta xây dựng ảnh cộng hưởng từ. Trong thực tế, chúng ta phải sử dụng xung kích thích nhiều lần, khoảng thời gian giữa hai lần phát xung kích thích được chọn cho phù hợp và được gọi là thời kích hoặc thời lặp TR (repetition time).

Thời kích TR này có liên quan mật thiết với thời gian T1 của mô. Giả sử chúng ta đang xem xét một mô có thời gian T1. Sau khi xung kích thích đầu tiên được phát ra, chúng ta đợi một khoảng thời gian TR để phát xung thứ hai. Lúc này chúng ta gặp một trong hai tình huống:

1. Thời kích TR dài bằng hoặc hơn hẳn so với T1, hoặc

2. Thời kích TR nhỏ hơn nhiều so với T1

Trong tình huống (1), do thời kích TR dài bằng hoặc hơn T1 nên khi phát xung lần thứ hai, độ từ hóa dọc hầu như đã khôi phục lại hoàn toàn và vì thế, tín hiệu cộng hưởng từ có được sau khi phát xung lần hai cũng giống tín hiệu sau khi phát xung lần một.

Thế nhưng trong tình huống (2), thời kích TR ngắn hơn nhiều so với T1 nên khi phát xung lần hai, độ từ hóa dọc chỉ mới khôi phục một phần (Mz). Ở lần này, độ từ hóa dọc một phần Mz này bị lật ngang vào mặt phẳng xy, tạo ra một độ từ hóa ngang Mxy nhỏ hơn so với độ từ hóa ngang của lần phát xung đầu tiên. Độ từ hóa ngang lần hai này tạo ra tín hiệu lần hai nhỏ hơn so với tín hiệu lần một (Hình 1).

Với những lần phát xung tiếp theo sau được lặp lại sau mỗi khoảng TR, độ từ hóa dọc Mz được khôi phục lại dưới tác dụng của từ trường B0 sẽ khá ổn định và có độ lớn tùy theo sự chênh lệch giữa TR với T1 của mô. Nói một cách cụ thể hơn, chúng ta có kết quả sau:

1. Nếu TR và T1 gần như bằng nhau hoặc TR dài hơn T1, tín hiệu cộng hưởng từ được tạo ra mạnh nhất.

2. Ngược lại, nếu TR ngắn hơn nhiều so với T1, tín hiệu cộng hưởng từ sẽ yếu hơn so với trường hợp (1).


Hình
1: Tác dụng tạo tín hiệu cộng hưởng từ của một thời kích TR ngắn hơn so với thời gian T1 của một mô. (a) Xung kích thích lần đầu tiên làm lật Mo vào mặt phẳng ngang. (b) Xung kích thích lần hai xảy ra khi độ từ hóa dọc Mz 
chỉ mới khôi phục một phần, tạo ra Mxy nhỏ hơn nhiều so với lần một.

Kết quả này sẽ được vận dụng trong Phần 3 để tạo ra hình trọng T1 hay ảnh tương phản theo T1.

Góc lật

Từ trước đến giờ chúng ta vẫn ngầm định với nhau rằng xung kích thích đang được sử dụng là xung 90o, nghĩa là xung kích thích tạo một góc lật 90o. Trong phần này chúng ta xét đến khả năng sử dụng những xung kích thích có góc lật nhỏ hơn 90o.

Thử quan sát Hình 2. Độ từ hóa dọc và độ từ hóa ngang khi góc lật 90o được vẽ bằng các vectơ xám. Trong Hình 2a, chúng ta sử dụng một góc lật lớn gần bằng 90o. Khi đó, độ từ hóa ngang được tạo ra có nhỏ hơn chút ít so với trường hợp góc lật 90o. Bù lại độ từ hóa dọc Mz chưa bị lật hoàn toàn và vẫn còn lại một ít (các vectơ đậm). Kết quả là tín hiệu cộng hưởng từ được tạo ra không giảm bao nhiêu so với trường hợp góc lật 90o.

Quan sát tiếp Hình 2b, chúng ta thấy góc lật khá nhỏ so với 90o. Khi đó, độ từ hóa dọc chỉ bị mất một ít để chuyển thành độ từ hóa ngang, cho ra tín hiệu cộng hưởng từ không mạnh bằng so với khi dùng góc lật lớn. Hơn thế nữa, do độ từ hóa dọc hầu như còn nguyên nên chúng ta mất ít thời gian để khôi phục lại hoàn toàn độ từ hóa dọc. Do vậy nếu chúng ta dùng thời kích TR ngắn, độ từ hóa dọc vẫn được khôi phục hoàn toàn.

Những nhận xét trên cho phép chúng ta rút ra được điều gì? Trước tiên chúng ta cần nhấn mạnh rằng tín hiệu cộng hưởng từ được tạo ra là do độ từ hóa ngang quay quanh trục z, do vậy khi độ từ hóa ngang nhỏ, tín hiệu  cộng hưởng từ yếu. Trong phần trước chúng ta cũng đã biết rằng nếu T1 của mô khá dài thì khi dùng thời kích TR ngắn, chúng ta chỉ có được một độ từ hóa ngang nhỏ, sinh ra một tín hiệu yếu. Tuy nhiên nếu biết cân đối thì trong trường hợp này, chúng ta vẫn có thể thu được một tín hiệu cộng hưởng từ đủ mạnh bằng cách chọn một góc lật thích hợp.


Hìn
h 2: Ảnh hưởng của góc lật đối với độ từ hóa dọc và độ từ hóa ngang. 
(a) Với góc lật lớn gần bằng 90o, độ từ hóa dọc lật hầu như hoàn toàn thành độ từ hóa ngang, chỉ còn lại một ít chưa lật hết. (b) Với góc lật nhỏ hơn nhiều so với 90o, độ từ hóa dọc chỉ lật một ít thành độ từ hóa ngang và hầu như còn nguyên.

Về mặt lý thuyết, nếu chúng ta định dùng một thời kích TR trên một mô có thời gian T1 đã biết, góc lật tối ưu cho phép tạo ra được tín hiệu mạnh nhất có thể được tính bằng công thức sau đây:

Góc tối ưu = arccos(e-TR/T1)

trong đó e ≈ 2,7282 là cơ số của logarit tự nhiên. Góc lật tối ưu ứng với các giá trị TR và T1 cho trước còn được gọi là góc Ernst (Richard Ernst là một trong những người có những đóng góp quan trọng nhất cho kỹ thuật chụp ảnh cộng hưởng từ y học. Năm 1991, ông nhận được giải Nobel vì những đóng góp này).

Như vậy khi chúng ta muốn dùng thời kích TR ngắn nhưng vẫn muốn có được tín hiệu đủ mạnh trên các mô có T1 dài, sử dụng một góc lật nhỏ là một kỹ thuật thích hợp. Vấn đề này sẽ được xem xét lại trong những phần sau khi chúng ta nói đến các kỹ thuật làm giảm bớt thời gian đo tín hiệu cộng hưởng từ.

Thời vang TE

Như chúng ta đã biết, tín hiệu cộng hưởng từ ngay sau khi tắt xung luôn là tín hiệu mạnh nhất. Tuy nhiên vì cần phải thực hiện thêm một số kỹ thuật quan trọng khác trước khi đo tín hiệu nên trong thực tế, chúng ta luôn có một khoảng thời gian nhất định kể từ lúc tắt xung kích thích đến lúc đo tín hiệu. Khoảng thời gian này được gọi là thời vang TE (echo time).

Sở dĩ gọi là thời vang vì tín hiệu đo được lúc này không phải là tín hiệu gốc ban đầu mà là tín hiệu đã được tái lập lại bằng một kỹ thuật thích hợp. Nói cách khác, tín hiệu đo được là tín hiệu vọng lại hay một điểm vang (echo) của tín hiệu ban đầu. Ngay trong phần tiếp theo chúng ta sẽ gặp một kỹ thuật tái lập lại tín hiệu rất độc đáo được dùng trong một chuỗi xung căn bản là chuỗi xung điểm vang spin (viết tắt là chuỗi xung SE).

Cần nhắc lại rằng thời gian T2 chính là thời gian xảy ra hiện tượng suy giảm tín hiệu FID. Do vậy thời vang TE có mối liên hệ chặt chẽ với thời gian T2 của một mô. Khi TE khá nhỏ so với T2, tín hiệu thu được lúc này còn khá mạnh. Tuy nhiên khi TE dài gần bằng T2, tín hiệu thu được sẽ yếu vì đã bị suy giảm nhiều.

Chúng ta cũng biết rằng trong thực tế, do tác động của từ trường cục bộ không đồng nhất vốn luôn tồn tại trong các mô, thời gian suy giảm tín hiệu thực tế còn ngắn hơn nữa. Thời gian này gọi là T2*. Như vậy nếu TE khá ngắn, tín hiệu thu được vẫn còn là tín hiệu chịu ảnh hưởng của T2. Khi TE dài hơn, ảnh hưởng của T2* càng rõ, và tín hiệu thu  được  lúc  này  càng  biểu  hiện  cho  tình  trạng  không  đồng  nhất  của  từ trường cục bộ.

Xung tái lập 180o

Theo như phân tích ở trên, thời vang TE cho phép chúng ta có đủ thời gian để thực hiện một số kỹ thuật cần thiết trước khi đo tín hiệu. Tuy nhiên qua thời gian, số proton quay lệch pha nhau càng nhiều và đây là nguyên nhân của hiện tượng suy giảm tín hiệu FID.

Bây giờ thử quan sát các proton đang quay trong mặt phẳng xy tại một số thời điểm sau khi tắt xung kích thích. Trên Hình 3, mỗi proton được biểu thị bằng một vectơ nhỏ. Ở Hình 3a, các proton sau khi tắt xung kích thích đang cùng pha, tạo ra một vectơ lớn nhất tại vạch xuất phát. Trên hình này, chúng ta xem như trục x là vạch xuất phát. Sau đó do sự khác biệt về tốc độ quay, chúng dần dần lệch pha nhau: các proton quay nhanh hơn vượt dần lên trước, các proton quay chậm rớt lại phía sau như được minh họa trong Hình 3b. Ở đây, proton có vectơ xám chạy chậm và rớt hẳn lại phía sau, nghĩa là nó nằm gần vạch xuất phát (đường chấm đứt đoạn).

Bây giờ, nếu tại thời điểm TE/2, nghĩa là sau khi hết khoảng một nửa thời vang TE, chúng ta phát ra một xung 180o. Tác dụng của xung là làm lật các proton 180o, đồng nghĩa với việc lật úp mặt phẳng xy quanh trục xuất phát ban đầu. Lúc này, các proton đang chạy “lật đật” phía sau “bỗng dưng” lại trở thành những proton dẫn đầu (Hình 3c). Tuy nhiên do chúng vẫn quay chậm hơn nên trong khoảng nửa thời gian TE còn lại, chúng dần bị các pro- ton chạy nhanh bắt kịp. Vì vậy tại đúng thời điểm đo TE như trên Hình 3d, tín hiệu đã được tái lập, tạo ra một điểm vang (echo). Xung 180o được dùng với mục đích này gọi là xung tái lập (refocusing pulse).

Về cơ bản, xung tái lập đã hóa giải được các nguyên nhân làm cho các pro- ton lệch pha nhau do tình trạng không đồng nhất của từ trường cục bộ. Kỹ thuật độc đáo này hiện nay đã trở thành một trong những kỹ thuật căn bản của cộng hưởng từ. Các chuỗi xung điểm vang spin hay spin echo (SE) mà chúng ta sẽ nghiên cứu trong các phần tiếp theo đều dựa trên nền tảng của kỹ thuật này.


Hìn
h 3: Kỹ thuật dùng xung tái lập 180o để thu được một điểm vang cần thiết tại thời điểm đo tín hiệu TE. Trong (a), các proton đang cùng pha tại thời điểm ngay sau khi tắt xung kích thích. Theo thời gian, các proton lệch pha nhau, dẫn đến tình huống của (b) tại thời điểm TE/2. Trong (c), sau khi phát xung tái lập 180o, các proton bị lật qua phía bên đối diện của vạch xuất phát, khiến cho các proton quay chậm lại đứng trước các proton quay nhanh. Cuối cùng vào thời điểm TE như trong (d), các proton lại cùng pha, tạo ra một điểm vang.

2.  NGUYÊN LÝ TƯƠNG PHẢN CỘNG HƯỞNG TỪ

Chúng ta đã biết rằng mục tiêu quan trọng nhất của các kỹ thuật chụp ảnh y học là khả năng phân định rõ ràng các cấu trúc giải phẫu, nhờ đó chúng ta dễ dàng phát hiện các cấu trúc bất thường ngay cả khi kích thước của chúng còn rất nhỏ. Trên một hình trắng đen, các cấu trúc cạnh nhau có thể “phân biệt được” nếu chúng có mức độ trắng-đen khác nhau đủ để mắt phân biệt được.

Khác biệt về mức độ trắng-đen giữa các cấu trúc trên một hình ảnh y học được gọi là độ tương phản (contrast). Yêu cầu tạo ra được một độ tương phản cao giữa các cấu trúc nằm cạnh nhau có thể được xem là một trong những yêu cầu quan trọng nhất của mọi kỹ thuật chụp ảnh y học. Cộng hưởng từ là một kỹ thuật chụp ảnh y học tạo được độ tương phản tốt nhất hiện nay đối với nhiều cấu trúc trong cơ thể.

Theo cách hiểu thông thường, ảnh chụp cộng hưởng từ là hình ảnh phân bố nước và mỡ (chủ yếu là nước) trong các mô cơ thể. Điều này nghe có vẻ như nơi đâu có nhiều nước, nơi đó có nhiều tín hiệu cộng hưởng từ. Cách hiểu giản đơn như vậy chỉ đúng một phần. Trước tiên, như chúng ta đã biết, tỷ lệ nước tự do và nước tù trong mô có ảnh hưởng trực tiếp đến các thời gian hồi giãn của mô: mô có nhiều nước tự do sẽ có các thời gian hồi giãn dài hơn mô có ít nước tự do. Thứ hai, bởi vì tín hiệu cộng hưởng từ bị suy giảm theo thời gian, thời điểm đo tín hiệu có ảnh hưởng trực tiếp đến lượng tín hiệu thu được. Thời gian hồi giãn và thời điểm đo tín hiệu có thể được dùng phối hợp để có được các loại ảnh cộng hưởng từ với những đặc điểm tương phản khác nhau, không hoàn toàn biểu thị cho sự phân bố nước trong các mô cơ thể.

Kỹ thuật chụp ảnh cộng hưởng từ sử dụng cường độ tín hiệu thu được từ các proton của nước và mỡ có mặt trong các mô để tạo ảnh. Cường độ tín hiệu của mô càng mạnh, hình ảnh cộng hưởng từ của mô đó càng trắng. Như vậy, mức độ trắng-đen của mô trên ảnh cộng hưởng từ biểu thị cho cường độ tín hiệu được phát ra từ mô. Trong thực hành lâm sàng, người ta thường dùng thuật ngữ tín hiệu cao (high signal) để mô tả một vùng “trắng” và thuật ngữ tín hiệu thấp (low signal) để mô tả một vùng “đen” trên hình cộng hưởng từ. Khi muốn chỉ rõ sự khác biệt tín hiệu giữa các mô (độ tương phản), người ta dùng các thuật ngữ cường độ mạnh (hyperintensity), cùng cường độ (isointensity) và cường độ yếu (hypointensity).

Để có được một độ tương phản tốt trên ảnh, kỹ thuật chụp ảnh cộng hưởng từ hiện sử dụng nhiều nguyên lý tương phản khác nhau. Trong phần này chúng ta sẽ nghiên cứu ba nguyên lý tương phản cơ bản được sử dụng thường xuyên trong các hệ thống chụp ảnh cộng hưởng từ là:

  1. Nguyên lý tương phản trọng T1 dựa trên sự khác biệt về thời gian T1, cho ra một loại ảnh cộng hưởng từ có tên gọi là hình trọng T1 (T1- weighted image hay T1W)

  2. Nguyên lý tương phản trọng T2 dựa trên sự khác biệt về thời gian T2, cho ra một loại ảnh cộng hưởng từ có tên gọi là hình trọng T2 (T2- weighted image hay T2W)

  3. Nguyên lý tương phản trọng đậm độ proton dựa trên sự khác biệt về đậm độ proton trong mô, cho ra một loại ảnh cộng hưởng từ có tên gọi là hình trọng đậm độ proton (proton density-weighted image hay PDW)

Ngoài ba loại hình ảnh tương phản nêu trên, kỹ thuật cộng hưởng từ cũng sử dụng một số nguyên lý tương phản khác. Chẳng hạn như dựa vào khả năng khuyếch tán của nước trong cơ thể, kỹ thuật cộng hưởng từ có thể tạo ra một loại ảnh được gọi là hình trọng khuyếch tán (Diffusion-weighted  Image hay DWI). Nguyên lý tương phản trọng khuyếch tán rất có giá trị  trong lĩnh vực hình ảnh học thần kinh, đặc biệt là phát hiện tình trạng nhồi máu não giai đoạn sớm giúp các thầy thuốc lâm sàng có cơ sở để thực hiện điều trị tích cực.

3.  NGUYÊN LÝ TƯƠNG PHẢN TRỌNG T1

Một hình trọng T1 được tạo lập dựa trên sự khác biệt thời gian T1 giữa các mô. Để có được một hình như thế, chúng ta cần chọn thời kích TR và thời vang TE sao cho các thời gian T1 khác nhau càng nhiều sẽ phát ra tín hiệu cộng hưởng từ có cường độ khác nhau càng lớn.

Như chúng ta đã biết từ những phần trước, tín hiệu cộng hưởng từ phụ thuộc vào độ lớn của vectơ từ hóa ngang trong mặt phẳng xy. Độ từ hóa ngang này đến lượt nó lại phụ thuộc vào độ lớn của vectơ từ hóa dọc và góc lật a (xem Phần 1): khi a = 90o, độ từ hóa dọc bị lật hoàn toàn thành độ từ hóa ngang; khi a nhỏ hơn 90o, độ từ hóa dọc chỉ bị lật một phần. Trong cả hai trường hợp, độ lớn của vectơ từ hóa dọc có ảnh hưởng đến độ lớn của vectơ từ hóa ngang, và vì vậy ảnh hưởng đến cường độ tín hiệu cộng hưởng từ.

Chúng ta xem lại tình huống ngay trước lần phát xung kích thích đầu tiên. Dưới tác dụng của từ trường ngoài B0, proton trong các mô lúc này cùng nhau tạo thành độ từ hóa thực Mo. Thế rồi xung kích thích thứ nhất được phát ra, độ từ hóa thực Mo bị lật thành độ từ hóa ngang Mxy trong mặt phẳng xy. Sau khi tắt xung, độ từ hóa dọc bắt đầu được khôi phục. Tốc độ khôi phục độ từ hóa dọc ở các mô tùy thuộc vào thời gian T1 của chúng: mô có T1 ngắn khôi phục độ từ hóa dọc nhanh hơn so với mô có T1 dài. Lúc đầu, vectơ từ hóa dọc của các mô có T1 ngắn sẽ lớn hơn vectơ từ hóa dọc của các mô có T1 dài. Dần dà theo thời gian, khác biệt độ lớn giữa các vectơ từ hóa dọc của các mô có T1 dài ngắn khác nhau sẽ bị thu hẹp lại để rồi cuối cùng chúng sẽ bằng nhau và bằng với vectơ từ hóa thực Mo sau một khoảng thời gian đủ lớn tính từ lúc tắt xung kích thích lần đầu.

Tuy nhiên nếu cho phát xung kích thích lần hai tại một thời điểm khá ngắn so với thời điểm phát xung lần một, nghĩa là thời kích TR ngắn, khác biệt thời gian T1 giữa các mô sẽ bộc lộ rõ: các T1 ngắn đã hồi phục độ từ a dọc khá nhiu so với c T1 dài nên trong ln thứ hai phát xung kích thích sẽ có độ từ hóa ngang lớn hơn, tạo ra tín hiệu cộng hưởng từ mạnh hơn các mô có thời gian T1 dài. Ở những lần phát xung tiếp theo với cùng thời kích TR, chúng ta cũng có kết quả tương tự bởi vì độ lớn của vectơ từ hóa dọc hồi phục lại được sau mỗi xung kích thích phụ thuộc vào từ trường ngoài B0 và thời gian T1, vốn là những đại lượng không đổi. Do vậy, chọn một thời kích TR ngắn sẽ bộc lộ rõ ràng sự khác biệt thời gian T1 của các mô. Khi đó, các mô có T1 ngắn sẽ cho tín hiệu mạnh; ngược lại các mô có thời gian T1 dài sẽ cho tín hiệu yếu (Hình 4). Hình ảnh tạo ra dựa trên sự khác biệt T1 được gọi là hình trọng T1 (T1-weighted image).


Hìn
h 4: Hình trọng T1 cắt ngang não ỏ mức não thất bên cho thấy rất rõ cấu trúc chất xám-chất trắng của mô não. Trên hình trọng T1, chất xám có màu xám (vỏ não và các nhân xám trung ương) còn chất trắng có màu trắng. Lý do là do chất trắng có T1 ngắn hơn so với chất xám nên cho tín hiệu mạnh hơn. Chú ý rằng lớp viền thật sáng quanh sọ là lớp mỡ dưới da có T1 rất ngắn. Vùng đen giữa hình ngăn cách bởi một viền trắng là hình ảnh hai não thất bên với tín hiệu rất yếu của dịch não tủy vì có T1 rất dài.

Thế nhưng thời kích TR bao nhiêu mới được gọi là ngắn? Không có một giá trị cụ thể nào như thế. Tuy nhiên để độc giả dễ hình dung, chúng tôi tạm đưa ra một con số dễ nhớ: thời kích TR nhỏ hơn 1000 ms (dưới 1 giây) có thể được xem là ngắn.

Bây giờ đến thời vang TE. Để có được một hình có độ tương phản tốt nhất trên một hình trọng T1, chúng ta cũng cần chọn thời vang TE ngắn vì theo thời gian, tín hiệu cộng hưởng từ sẽ suy giảm dần. Trong thực hành, TE dưới 30 ms có thể được xem như TE ngắn.

Chúng ta có thể tóm tắt một số điểm chính về loại hình trọng T1 như sau:

  1. Một hình trọng T1 được tạo lập bằng cách dùng thời kích TR ngắn cùng với thời vang TE ngắn.

  2. Trên một hình trọng T1, các mô có T1 ngắn sẽ có tín hiệu mạnh (màu trắng) còn các mô có T1 dài sẽ có tín hiệu yếu (màu đen). Cụ thể, mỡ có màu trắng nhất, các mô mềm có màu xám hơn còn các loại dịch cho màu đen trên hình trọng

4.  NGUYÊN LÝ TƯƠNG PHẢN TRỌNG T2

Nguyên lý tương phản thứ hai được xem xét trong phần này dựa vào sự khác biệt thời gian T2 giữa các mô. Chúng ta cần nhớ lại rằng theo thời gian, tín hiệu cộng hưởng từ sẽ yếu dần do hiện tượng suy giảm cảm ứng tự do FID. Thời gian suy giảm tín hiệu chính là thời gian T2. Nếu dùng thời vang TE ngắn, nghĩa là nếu đo tín hiệu thật sớm, sự suy giảm tín hiệu của các mô lúc này chưa nhiều nên sự khác biệt tín hiệu giữa các mô không rõ.

Thế nhưng nếu đo tín hiệu trễ hơn, nghĩa là thời vang TE dài, các mô có T2 ngắn sẽ bị mất khá nhiều tín hiệu còn các mô có T2 dài lúc này chỉ suy giảm một ít, làm cho sự khác biệt tín hiệu giữa các mô có thời gian T2 khác nhau rõ ràng hơn (Hình 5). Hình ảnh thu được dựa trên nguyên lý tương phản do thời gian T2 này được gọi là hình trọng T2 (T2-weighted image).

Theo nguyên lý này, chúng ta cần dùng thời vang TE dài để bộc lộ rõ sự khác biệt tín hiệu giữa các mô có thời gian T2 khác nhau. Như chúng ta đã biết trong phần trước, thời vang dài ngắn không có một mốc cụ thể. Thông thường, thời vang TE lớn hơn 80 ms có thể được xem là TE dài.

Thế nhưng không giống như trong nguyên lý tương phản trọng T1, ở đó chúng ta cần dùng thời kích TR ngắn để có được sự khác biệt tín hiệu giữa các mô dựa trên T1, trong nguyên lý tương phản trọng T2, chúng ta cần dùng thời kích TR dài để cho các mô có đủ thời gian hồi phục hoàn toàn vectơ từ hóa dọc, để rồi sau đó nó sẽ lật thành vectơ từ hóa ngang, phát ra tín hiệu cộng hưởng từ có cường độ mạnh nhất có thể có. Trên cơ sở tín hiệu cộng hưởng từ sau khi ngừng phát xung kích thích, tốc độ suy giảm tín hiệu sẽ được tận dụng để tạo ra độ tương phản.

Nói tóm lại, chúng ta cần nhớ một số điểm chính yếu về hình trọng T2 như sau:

  1. Hình trọng T2 được tạo lập bằng cách dùng thời kích TR dài cùng với thời vang TE dài.

  2. Trên một hình trọng T2, các mô có T2 dài sẽ có tín hiệu mạnh (màu trắng) còn các mô có T2 ngắn sẽ có tín hiệu yếu (màu đen). Cụ thể, các chất dịch như dịch não tủy có màu trắng nhất, các mô mềm có màu xám hơn. Các mô có tín hiệu suy giảm cực nhanh (T2 cực ngắn) như vỏ xương hầu như không có tín hiệu nên rất đen trên hình trọng T2.


Hìn
h 5: Một hình trọng T2 cắt dọc đứng vùng cột sống thắt lưng cho thấy rõ các đốt sống, đĩa đệm, các thành phần trong ống sống và các mỏm ngang của đốt sống. Một điểm rất đáng chú ý là dịch não tủy trong ống sống rất trắng trên hình trọng T2 do có thời gian T2 dài. Chúng bao quanh một vệt đen là phần cuối của chóp tủy kéo dài thành chùm đuôi ngựa.

5. NGUYÊN LÝ TƯƠNG PHẢN TRỌNG ĐẬM ĐỘ PROTON

Ngoài hai nguyên lý tương phản đã nêu, người ta còn dùng nguyên lý tương phản  dựa  trên  đậm  độ  của  proton  trong  các  mô  cơ  thể, cho  ra  loại  hình trọng đậm độ proton (proton density-weighted image hay PDW).

Như chúng ta đã biết, tín hiệu cộng hưởng từ thu được ngay sau khi tắt xung kích thích về nguyên tắc chỉ phụ thuộc vào đậm độ pro- ton có trong mô, nghĩa là phụ thuộc vào lượng nước và mỡ trong mô. Muốn thu được tín hiệu ở giai đoạn này, chúng ta cần dùng thời kích TR đủ dài để có được tín hiệu tốt nhất kèm với thời vang TE ngắn để làm giảm bớt sự suy giảm tín hiệu (Hình 6).


Hình
6: Một hình trọng đậm độ proton cắt ngang não qua một lớp cắt nằm trên mức não thất bên.

Thế nhưng như chúng ta đã biết, tín hiệu cộng hưởng từ chỉ phản ánh một cách tương đối đậm độ proton trong mô. Tỷ lệ giữa lượng nước tù và nước tự do trong mô làm thay đổi các thời gian hồi giãn đặc trưng của mô, và do vậy tín hiệu cộng hưởng từ của mô không hoàn toàn biểu thị cho đậm độ proton trong mô. Độ xê dịch hóa học cũng là một yếu tố làm thay đổi tín hiệu. Chính vì vậy một số tác giả đề xuất không gọi là hình trọng đậm độ proton mà gọi là ảnh trung gian (intermediate-weighted image). Tuy nhiên thuật ngữ hình trọng đậm độ proton đã được sử dụng phổ biến nên trong cuốn sách này nó vẫn được sử dụng.

Để kết thúc phần này, chúng ta tóm tắt ba nguyên lý tương phản cơ bản bằng cách so sánh các tham số TR và TE được dùng cho mỗi loại tương phản (Hình 7).

  1. Thời kích TR và thời vang TE đều ngắn sẽ tạo ra hình trọng T1

  2. Thời kích TR và thời vang TE đều dài sẽ tạo ra hình trọng T2

  3. Thời kích TR dài còn thời vang TE ngắn sẽ tạo ra hình trọng đậm độ proton

  4. Thế còn trường hợp thời kích TR ngắn còn thời vang TE dài? Nói chung chúng không tạo ra được một hình ảnh có ý nghĩa về độ tương phản vì khi dùng TR ngắn, khác biệt tín hiệu giữa các mô có nguồn gốc từ sự khác biệt thời gian T1 nhưng vì lại dùng thời vang TE dài nên sự khác biệt tín hiệu lại không còn đáng kể nữa do lúc này tín hiệu đã bị suy giảm nhiều.

Hình 7. Các dạng tương phản hình ảnh do phối hợp TR và TE.

6. NHỮNG ĐIỂM CẦN GHI NHỚ

Trong phần này chúng ta đã xem xét ba nguyên lý tương phản thường được dùng khi tạo lập ảnh cộng hưởng từ. Dưới đây chúng ta tóm tắt một số khái niệm quan trọng.

  • Khi chụp ảnh cộng hưởng từ, sự khác biệt cấu trúc giữa các mô được xác định bằng sự khác biệt về cường độ tín hiệu giữa chúng. Thông thường, cường độ tín hiệu được biểu hiện trên hình bằng mức độ trắng đen: cường độ càng cao, cấu trúc càng trắng. Mức độ khác biệt trắng đen khi này được gọi là độ tương phản của hình.

  • Để có được đủ dữ liệu cho một ảnh cộng hưởng từ, chúng ta cần phải phát xung kích thích nhiều lần, tương ứng với nhiều lần đo tín hiệu. Khoảng cách thời gian giữa hai lần phát xung kích thích được gọi là thời kích TR. Khoảng cách thời gian từ khi phát xung kích thích đến lúc thực hiện đo tín hiệu được gọi là thời vang TE. Mỗi tín hiệu tại thời điểm đo được gọi là điểm vang (echo).

  • Ngoài thời kích TR và thời vang TE, người ta còn có thể dùng một góc lật a nhỏ hơn 90o. Mục đích là chỉ lật một phần vectơ từ hóa dọc thành vectơ từ hóa ngang đủ để tạo ra một lượng tín hiệu cần thiết, giảm bớt thời gian khôi phục hoàn toàn vectơ từ hóa dọc.

  • Có ba nguyên lý tương phản cơ bản được dùng trong kỹ thuật chụp cộng hưởng từ: nguyên lý trọng T1 sử dụng TR và TE ngắn; nguyên lý trọng T2 sử dụng TR và TE dài; nguyên lý trọng đậm độ proton sử dụng TR dài và TE ngắn.

  • Trên một hình trọng T1, chúng ta dùng một thời kích TR ngắn để bộc lộ rõ sự khác biệt cường độ tín hiệu giữa hai mô có thời gian T1 khác nhau: mô có T1 ngắn hầu như đã khôi phục hoàn toàn độ từ hóa dọc, cho ra độ từ hóa ngang ở lần kích thích tiếp theo khá lớn; trong khi đó mô có T1 dài chỉ khôi phục được một phần nên độ từ hóa ngang tương ứng ở lần kích thích tiếp theo sẽ nhỏ. Khi đó nếu đo tín hiệu tại một thời điểm khá ngắn sau khi phát xung kích thích (thời vang TE ngắn), tín hiệu của mô có T1 ngắn sẽ cao còn tín hiệu của mô có T1 dài sẽ thấp.

  • Trên một hình trọng T2, chúng ta tận dụng sự khác biệt thời gian T2 giữa các mô, nghĩa là tốc độ suy giảm tín hiệu: mô có T2 càng ngắn, tín hiệu suy giảm càng nhanh. Trước tiên chúng ta cần dùng thời kích TR đủ dài để độ từ hóa dọc của các mô đều khôi phục hoàn toàn, cho ra độ từ hóa ngang tốt nhất có thể có. Sau đó phát xung kích thích và thực hiện đo tín hiệu tại một thời điểm khá dài (thời vang TE dài). Lúc này các mô có thời gian T2 ngắn hầu như đã mất hết tín hiệu; các mô có thời gian T2 dài chỉ mất một ít, cho ra một hình trọng T2, trong đó mô có T2 dài sẽ có tín hiệu cao (màu trắng) còn mô có T2 ngắn sẽ có tín hiệu thấp (màu đen).

  • Trên một hình trọng đậm độ proton, chúng ta tận dụng sự khác biệt giữa đậm độ proton của các mô để tạo độ tương phản trên hình bằng cách chọn thời kích TR dài và thời vang TE ngắ Thời kích TR dài cho phép các mô khôi phục hoàn toàn độ từ hóa dọc, tạo ra một độ từ hóa ngang lớn nhất trong lần kích thích tiếp theo. Thời vang TE ngắn cho phép đo được tín hiệu “thật” của các mô vì lúc này tín hiệu ở các mô chưa bị mất nhiều. Sự khác biệt tín hiệu lúc này biểu thị một cách tương đối sự khác biệt của đậm độ proton trong mô.

Tham khảo: 

  1. Trần Đức Quang (2008), Nguyên lý và kỹ thuật chụp cộng hưởng từ, Chương 3, NXB ĐHQG TPHCM, Trang 35-48.
  2. Mriquestions.com
  3. Radiopaedia.org